Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 543–551 | Cite as

Evaluation of polyvinyl toluene scintillators for fast neutron imaging

  • William C. Chuirazzi
  • Ibrahim Oksuz
  • Praneeth Kandlakunta
  • Thomas N. Massey
  • Carl R. Brune
  • Nerine J. Cherepy
  • H. Paul Martinez
  • Lei Cao
Article
  • 99 Downloads

Abstract

We evaluated polyvinyl toluene (PVT) scintillators fabricated with different emitting dopants and scintillator optical configurations for fast neutron imaging. A neutron imaging apparatus was constructed to study scintillators under MeV neutron exposure. PVT with 2% Xylyl Flrpic emitter was identified as the brightest. The addition of a black backing to the scintillator, compared with a specular reflector film backing, improved the resolution of the neutron image obtained with the PVT scintillator by about 2 ×. It is concluded that a PVT imaging screen with 2% Xylyl Flrpic, configured with a black backing, provides the best quality fast neutron image of the scintillators tested.

Keywords

Neutron imaging Fast neutron Organic scintillator PVT Spatial resolution Light yield 

Notes

Acknowledgements

We would like to thank the financial support of Lawrence Livermore National lab and staff at The Ohio State University Nuclear Reactor Laboratory. The contributions of CB and TM were supported in part by the U.S. Department of Energy, under Grants No. DE-FG02-88ER40387 and DE-NA0002905.

References

  1. 1.
    Brown KE, Greenfield MT, McGrane SD, Moore DS (2016) Advances in explosives analysis—part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem 408(1):35–47CrossRefPubMedGoogle Scholar
  2. 2.
    Brown KE, Greenfield MT, McGrane SD, Moore DS (2016) Advances in explosives analysis—part II: photon and neutron methods. Anal Bioanal Chem 408(1):49–65CrossRefPubMedGoogle Scholar
  3. 3.
    Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301(3):629–639CrossRefGoogle Scholar
  4. 4.
    Buffler A, Tickner J (2010) Detecting contraband using neutrons: challenges and future directions. Radiat Meas 45(10):1186–1192CrossRefGoogle Scholar
  5. 5.
    Buffler A (2004) Contraband detection with fast neutrons. Radiat Phys Chem 71(3):853–861CrossRefGoogle Scholar
  6. 6.
    Craft AE, Wachs DM, Okuniewski MA, Chichester DL, Williams WJ, Papaioannou GC, Smolinski AT (2015) Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory. Phys Procedia 69:483–490CrossRefGoogle Scholar
  7. 7.
    Craft AE, Barton JP (2017) Applications of neutron radiography for the nuclear power industry. Phys Procedia 88:73–80CrossRefGoogle Scholar
  8. 8.
    Groeschel F, Schleuniger P, Hermann A, Lehmann E, Wiezel L (1999) Neutron radiography of irradiated fuel rod segments at the SINQ: loading, transfer and irradiation concept. Nucl Instrum Methods Phys Res Sect A 424(1):215–220CrossRefGoogle Scholar
  9. 9.
    Lehmann EH, Vontobel P, Hermann A (2003) Non-destructive analysis of nuclear fuel by means of thermal and cold neutrons. Nucl Instrum Methods Phys Res Sect A 515(3):745–759CrossRefGoogle Scholar
  10. 10.
    Rai DK, Abir MI, Wu H, Khaykovich B, Moncton DE (2018) Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel. Nucl Instrum Methods Phys Res Sect A 879:141–146CrossRefGoogle Scholar
  11. 11.
    Abir MI, Islam FF, Craft A, Williams WJ, Wachs DM, Chichester DL, Meyer MK, Lee HK (2016) Determination of optimal imaging parameters for the reconstruction of a nuclear fuel assembly using limited angle neutron tomography. J Instrum 11(01):C01016CrossRefGoogle Scholar
  12. 12.
    Abir MI, Islam FF, Wachs DM, Lee HK (2016) Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics. J Radioanal Nucl Chem 307(3):1967–1979CrossRefGoogle Scholar
  13. 13.
    Cherepy NJ, Sanner RD, Beck PR, Swanberg EL, Tillotson TM, Payne SA, Hurlburt CR (2015) Bismuth-and lithium-loaded plastic scintillators for gamma and neutron detection. Nucl Instrum Methods Phys Res Sect A 778:126–132CrossRefGoogle Scholar
  14. 14.
    Ovechkina L, Riley K, Miller S, Bell Z, Nagarkar V (2009) Gadolinium loaded plastic scintillators for high efficiency neutron detection. Phys Procedia 2(2):161–170CrossRefGoogle Scholar
  15. 15.
    Katagiri M, Sakasai K, Matsubayashi M, Kojima T (2004) Neutron/γ-ray discrimination characteristics of novel neutron scintillators. Nucl Instrum Methods Phys Res Sect A 529(1):317–320CrossRefGoogle Scholar
  16. 16.
    Brenizer JS, Berger H, Stebbings CT, Giles GT (1997) Performance characteristics of scintillators for use in an electronic neutron imaging system for neutron radiography. Rev Sci Instrum 68(9):3371–3379CrossRefGoogle Scholar
  17. 17.
    Turkoglu D, Cao L, Lewandowski R (2013) A low-cost neutron radiography device. Phys Procedia 43:54–65CrossRefGoogle Scholar
  18. 18.
    Lewandowski R, Cao L, Turkoglu D (2012) Noise evaluation of a digital neutron imaging device. Nucl Instrum Methods Phys Res Sect A 674:46–50CrossRefGoogle Scholar
  19. 19.
    Turkoglu D, Burke J, Lewandowski R, Cao L (2012) Characterization of a new external neutron beam facility at the Ohio State University. J Radioanal Nucl Chem 291(2):321–327CrossRefGoogle Scholar
  20. 20.
    Aleksandrov VD, Bogolubov EP, Bochkarev OV, Korytko LA, Nazarov VI, Polkanov YG, Ryzhkov VI, Khasaev TO (2005) Application of neutron generators for high explosives, toxic agents and fissile material detection. Appl Radiat Isot 63(5):537–543CrossRefPubMedGoogle Scholar
  21. 21.
    Milbrath BD, Peurrung AJ, Bliss M, Weber WJ (2008) Radiation detector materials: an overview. J Mater Res 23(10):2561–2581CrossRefGoogle Scholar
  22. 22.
    Harvey JA, Hill NW (1979) Scintillation detectors for neutron physics research. Nucl Instrum Methods 162(1-3):507–529CrossRefGoogle Scholar
  23. 23.
    Bogolubov E, Bugaenko O, Kuzin S, Mikerov V, Monitch E, Monitch A, Pertsov A (2015) CCD detectors for fast neutron radiography and tomography with a cone beam. Nucl Instrum Methods Phys Res Sect A 542(1-3):187–191CrossRefGoogle Scholar
  24. 24.
    Yang W, Bin T, Heyong H, Bin L, Ke T, Young S, Wei Y, Chao C (2013) The study of zinc sulphide scintillator for fast neutron radiography. Phys Procedia 43:205–215CrossRefGoogle Scholar
  25. 25.
    Nelson RO, Vogel SC, Hunter JF, Watkins EB, Losko AS, Tremsin AS, Borges NP, Cutler TE, Dickman LT, Espy MA, Gautier DC, Madden AC, Majewski J, Malone MW, Mayo DR, McClellan KJ, Montgomery DS, Mosby SM, Nelson AT, Ramos KJ, Schirato RC, Schroeder K, Sevanto SA, Swift AL, Vo LK, Williamson TE, Winch NM (2018) Neutron imaging at LANSCE—from cold to ultrafast. J Imaging 4(2):45CrossRefGoogle Scholar
  26. 26.
    Bravar U, Bruillard PJ, Flückiger EO, Macri JR, McConnell ML, Moser MR, Ryan JM, Woolf RS (2006) Design and testing of a position-sensitive plastic scintillator detector for fast neutron imaging. IEEE Trans Nucl Sci 53(6):3894–3903CrossRefGoogle Scholar
  27. 27.
    Dangendorf V, Kersten C, Laczko G, Vartsky D, Mor I, Goldberg MB, Feldman G, Breskin A, Chechik R, Jagutzky O, Spillman U (2004) Detectors for energy-resolved fast-neutron imaging. Nucl Instrum Methods Phys Res Sect A 535(1):93–97CrossRefGoogle Scholar
  28. 28.
    Iikura H, Tsutsui N, Saito Y, Nojima T, Yasuda R, Sakai T, Matsubayashi M (2013) Investigation of the brightness enhancement using brightness enhancement films on a scintillator. Phys Procedia 43:161–168CrossRefGoogle Scholar
  29. 29.
    Finlay RW, Brient CE, Carter DE, Marcinkowski A, Mellema S, Randers-Pehrson G, Rapaport J (1982) The Ohio University beam swinger facility. Nucl Instrum Methods Phys Res 198(2-3):197–206CrossRefGoogle Scholar
  30. 30.
    Meisel Z, Brune CR, Grimes SM, Ingram DC, Massey TN, Voinov AV (2017) The Edwards Accelerator at Ohio University. Phys Procedia 90:448–454CrossRefGoogle Scholar
  31. 31.
    Howard WB, Grimes SM, Massey TN, Al-Quraishi SI, Jacobs DK, Brient CE, Yanch JC (2001) Measurement of the thick-target 9Be (p, n) neutron energy spectra. Nucl Sci Eng 138(2):145–160CrossRefGoogle Scholar
  32. 32.
    Agosteo S, Colautti P, Esposito J, Fazzi A, Introini MV, Pola A (2011) Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles. Appl Radiat Isot 69(12):1664–1667CrossRefPubMedGoogle Scholar
  33. 33.
    Massey TN, Al-Quraishi S, Brient CE, Guillemette JF, Grimes SM, Jacobs D, O’Donnell JE, Oldendick J, Wheeler R (1998) A measurement of the 27Al (d, n) spectrum for use in neutron detector calibration. Nucl Sci Eng 129(2):175–179CrossRefGoogle Scholar
  34. 34.
    McKeever SW (2001) Optically stimulated luminescence dosimetry. Nucl Instrum Methods Phys Res Sect B 184(1):29–54CrossRefGoogle Scholar
  35. 35.
    Lurie NA, Harris L, Young JC (1975) Calculation of gamma-ray response matrix for 5 cm NE-213 organic liquid scintillation detector. Nucl Instrum Methods 129(2):543–555CrossRefGoogle Scholar
  36. 36.
    Robbins MS, Hadwen BJ (2003) The noise performance of electron multiplying charge-coupled devices. IEEE Trans Electron Devices 50(5):1227–1232CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Engineering Program, Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Edwards Accelerator Laboratory, Department of Physics and AstronomyOhio UniversityAthensUSA
  3. 3.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations