Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 125–129 | Cite as

Direct low-energy measurement of 37Ar and 127Xe in a radiotracer gas using low-background proportional counters

  • Emily K. Mace
  • Craig E. Aalseth
  • Anthony R. Day
  • Eric W. Hoppe
  • Justin I. McIntyre
  • Allen Seifert
  • Richard M. Williams
Article

Abstract

A radiotracer gas with a blend of 37Ar and 127Xe was created for a gas migration experiment and was characterized at Pacific Northwest National Laboratory using ultra-low-background proportional counters. This paper describes the direct low-energy measurement of 37Ar and 127Xe in a dual-isotope sample. Using this low-energy technique, the dual-isotope radiotracer gas was determined to have activity concentrations of 483 Bq/cc and 1435 Bq/cc for 37Ar and 127Xe, respectively, and a ratio of 1:3 on the reference date of 7/11/2016.

Keywords

37Ar 127Xe Ultra-low-background Proportional counter Underground nuclear explosion Radiotracer 

Notes

Acknowledgements

The Underground Nuclear Explosion Signatures Experiment (UNESE) was created to apply a broad range of research and development (R&D) techniques and technologies to nuclear explosion monitoring and nuclear nonproliferation. It is a multi-year research and development project sponsored by NNSA DNN R&D, and is collaboratively executed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, National Security Technologies, Pacific Northwest National Laboratory, and Sandia National Laboratories. This work was performed by Pacific Northwest National Laboratory under award number DE-AC05-76RL01830. Information Release No. PNNL-SA-133392.

References

  1. 1.
    Biegalski SR, Tipping TN, Klingberg FJ (2015) Preparation of radioxenon and radioargon mixed sources for IFE14. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-015-4398-5 CrossRefGoogle Scholar
  2. 2.
    Klingberg FJ, Biegalski SR, Haas D, Prinke A (2015) 127Xe coincidence decay analysis in support of CTBT verification. J Radioanal Nucl Chem 305(1):225–232.  https://doi.org/10.1007/s10967-014-3871-x CrossRefGoogle Scholar
  3. 3.
    McIntyre JI, Aalseth CE, Alexander TR et al (2017) Measurements of Argon-39 at the U20az underground nuclear explosion site. J Environ Radioact 178–179:28–35.  https://doi.org/10.1016/j.jenvrad.2017.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aalseth CE, Day AR, Hoppe EW et al (2009) Design and construction of a low-background, internal-source proportional counter. J Radioanal Nucl Chem 282(1):233–237.  https://doi.org/10.1007/s10967-009-0258-5 CrossRefGoogle Scholar
  5. 5.
    Aalseth CE, Bonicalzi RM, Cantaloub MG et al (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503–113510.  https://doi.org/10.1063/1.4761923 CrossRefPubMedGoogle Scholar
  6. 6.
    Seifert A, Aalseth CE, Day AR, Fuller ES, Hoppe EW, Keillor ME, Mace EK, Overman CT, Warren GA (2013) The design, construction, and initial characterization of an ultra-low-background gas-proportional counting system. J Radioanal Nucl Chem 296(2):915–921.  https://doi.org/10.1007/s10967-012-2059-5 CrossRefGoogle Scholar
  7. 7.
    Aalseth CE, Day AR, Haas DA et al (2011) Measurement of 37Ar to support technology for on-site inspection under the comprehensive nuclear-test-ban treaty. Nucl Instrum Meth A 652(1):58–61.  https://doi.org/10.1016/j.nima.2010.09.135 CrossRefGoogle Scholar
  8. 8.
    Aalseth CE, Day AR, Fuller ES et al (2013) A new shallow underground gas-proportional counting lab—First results and Ar-37 sensitivity. Appl Radiat Isot 81:151–155.  https://doi.org/10.1016/j.apradiso.2013.03.050 CrossRefPubMedGoogle Scholar
  9. 9.
    Fritz BG, Aalseth CE, Back HO, Hayes JC, Humble PH, Ivanusa P, Mace EK (2018) Prediction of sub-surface 37Ar concentrations at locations in the Northwestern United States. J Environ Radioact 181:1–7.  https://doi.org/10.1016/j.jenvrad.2017.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Guillon S, Sun Y, Purtschert R, Raghoo L, Pili E, Carrigan CR (2016) Alteration of natural 37Ar activity concentration in the subsurface by gas transport and water infiltration. J Environ Radioact 155–156:89–96.  https://doi.org/10.1016/j.jenvrad.2016.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Haas DA, Orrell JL, Bowyer TW, McIntyre JI, Miley HS, Aalseth CE, Hayes JC (2010) The science case for 37Ar as a monitor for underground nuclear explosionsGoogle Scholar
  12. 12.
    Johnson C, Armstrong H, Wilson WH, Biegalski SR (2015) Examination of radioargon production by cosmic neutron interactions. J Environ Radioact 140:123–129.  https://doi.org/10.1016/j.jenvrad.2014.10.016 CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson C, Biegalski SR, Artnak EJ et al (2017) Production and release rate of 37Ar from the UT TRIGA Mark-II research reactor. J Environ Radioact 167:249–253.  https://doi.org/10.1016/j.jenvrad.2016.11.017 CrossRefPubMedGoogle Scholar
  14. 14.
    Olsen KB, Kirkham RR, Woods VT et al (2016) Noble gas migration experiment to support the detection of underground nuclear explosions. J Radioanal Nucl Chem 307(3):2603–2610.  https://doi.org/10.1007/s10967-015-4639-7 CrossRefGoogle Scholar
  15. 15.
    Riedmann RA, Purtschert R (2011) Natural 37Ar Concentrations in soil air: implications for monitoring underground nuclear explosions. Environ Sci Technol 45(20):8656–8664.  https://doi.org/10.1021/es201192u CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Williams RM, Aalseth CE, Bowyer TW et al (2015) Development of a low-level 37Ar calibration standard. Appl Radiat Isot.  https://doi.org/10.1016/j.apradiso.2015.12.027 CrossRefPubMedGoogle Scholar
  17. 17.
    Xiang YC, Gong J, Li W, Bian ZS, Hao FH, Wang HX, Wang Q, Xiong ZH (2008) Development of a system of measuring 37Ar by spectrum method. Wuli Xuebao 57(2):784–789Google Scholar
  18. 18.
    Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1997) Table of isotopes. Wiley, New YorkGoogle Scholar
  19. 19.
    Cagniant A, Le Petit G, Nadalut B, Gross P, Richard-Bressand H, Fontaine JP, Douysset G (2014) On the use of 127Xe standards for the quality control of CTBTO noble gas stations and support laboratories. Appl Radiat Isot 89:176–185.  https://doi.org/10.1016/j.apradiso.2014.02.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Unterweger MP (2007) Primary radioactive gas standards (excluding radon). Metrologia 44(4):S79CrossRefGoogle Scholar
  21. 21.
    Rodrigues M, Lépy MC, Cassette P, Mougeot X, Bé MM (2014) Standardization of xenon-127 and measurement of photon emission intensities. Appl Radiat Isot 87:342–347.  https://doi.org/10.1016/j.apradiso.2013.11.066 CrossRefPubMedGoogle Scholar
  22. 22.
    Williams RM, Aalseth CE, Ely JH et al (2013) Development of an absolute gas-counting capability for low to medium activities. Appl Radiat Isot 81:179–183.  https://doi.org/10.1016/j.apradiso.2013.03.064 CrossRefPubMedGoogle Scholar
  23. 23.
    Egnatuk CM, Lowrey J, Biegalski SR, Bowyer T, Haas D, Orrell J, Woods V, Keillor M (2012) Production of 37Ar in The University of Texas TRIGA reactor facility. J Radioanal Nucl Chem 291(1):257–260.  https://doi.org/10.1007/s10967-011-1254-0 CrossRefGoogle Scholar
  24. 24.
    Klingberg FJ, Biegalski SR (2015) Improvements in high purity radioxenon sample preparation and analysis. J Radioanal Nucl Chem 304(3):1145–1152.  https://doi.org/10.1007/s10967-015-3937-4 CrossRefGoogle Scholar
  25. 25.
    Cleveland BT, Daily T, Raymond Davis J, Distel JR, Lande K, Lee CK, Wildenhain PS, Ullman J (1998) Measurement of the solar electron neutrino flux with the homestake chlorine detector. Astrophys J 496(1):505CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Emily K. Mace
    • 1
  • Craig E. Aalseth
    • 1
  • Anthony R. Day
    • 1
  • Eric W. Hoppe
    • 1
  • Justin I. McIntyre
    • 1
  • Allen Seifert
    • 1
  • Richard M. Williams
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations