Uranium recovery and purification from simulated waste streams containing high uranium concentrations with dispersion liquid membranes

  • Maretha Fourie
  • Derik Jacobus van der Westhuizen
  • Henning Manfred Krieg
Article
  • 2 Downloads

Abstract

The suitability of dispersion liquid membranes (DLMs) to recover and purify uranium from simulated waste streams containing nitric acid, high uranium concentrations and radionuclide contaminants with tributyl phosphate (TBP) and ammonium carbonate ((NH4)2CO3) as stripping solution was investigated. The radionuclide surrogates were not extracted and complete uranium recovery was obtained from 15 g U L−1 solutions using a 1:4 ratio of 30% TBP in kerosene and 0.75 M (NH4)2CO3 dispersion. In addition, all the uranium in the stripping solution was precipitated. Consequently, DLM proved to be a promising solvent extraction contacting method for uranium recovery and purification.

Keywords

High uranium concentration Tributyl phosphate Radionuclide contaminants Ammonium carbonate stripping solution Dispersion liquid membrane 

Notes

Acknowledgements

This work is based on the research supported in part by Necsa and the South African National Research Foundation (NRF).

Supplementary material

10967_2018_5860_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 247 kb)

References

  1. 1.
    Stassen L, Suthiram J (2015) Initial development of an alkaline process for recovery of uranium from 99Mo production process waste residue. J Radioanal Nucl Chem 305:41–50.  https://doi.org/10.1007/s10967-015-3974-z CrossRefGoogle Scholar
  2. 2.
    Roy SC, Sonawane SV, Rathore NS, Pabby AK, Janardan P, Changrani RD, Dey PK, Bharadwaj SR (2010) Pseudo-emulsion based hollow fiber strip dispersion technique (PEHFSD): optimization, modelling and application of PEHFSD for recovery of U(VI) from process effluent. Sep Sci Technol 43(11–12):3305–3332.  https://doi.org/10.1080/01496390802064141 Google Scholar
  3. 3.
    Carrigan A, Gouzy-Portaix S, Dix J (2015) Feasibility of producing 99Mo on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum. Technical reports series. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    Rathore NS, Sastre AM, Pabby AK (2016) Membrane assisted liquid extraction of actinides and remediation of nuclear waste: a review. J Membr Sci Res 2(1):2–13.  https://doi.org/10.22079/jmsr.2016.15872 Google Scholar
  5. 5.
    Wang D (1987) Some aspects of the back end of the nuclear fuel cycle in China. In: Back end of the nuclear fuel cycle: strategies and options. International Atomic Energy AgencyGoogle Scholar
  6. 6.
    Hlushak SP, Simonin JP, Caniffi B, Moisy P, Sorel C, Bernard O (2011) Description of partition equilibria for uranyl nitrate, nitric acid and water extracted by tributyl phosphate in dodecane. Hydrometallurgy 109:97–105CrossRefGoogle Scholar
  7. 7.
    Todd T, Law J, Herbst R, Lumetta GJ, Moyer BA (2000) Treatment of radioactive wastes using liquid–liquid extraction technologies—fears, facts, and issues. In: Waste management, Tucson, Arizona, USGoogle Scholar
  8. 8.
    Maher CJ (2015) Current headend technologies and future developments in the reprocessing of spent nuclear fuels. In: Taylor R (ed) Reprocessing and recycling of spent nuclear fuel, vol 79. Woodhead Publishing, Cambridge, pp 93–124CrossRefGoogle Scholar
  9. 9.
    Klaassen R, Jansen EA (2001) The membrane contactor: environmental applications and possibilities. Environ Prog 20(1):37–43.  https://doi.org/10.1002/ep.670200114 CrossRefGoogle Scholar
  10. 10.
    Eccles H (2000) Nuclear fuel cycle technologies—sustainable in the twenty first century? Solvent Extr Ion Exch 18(4):633–654.  https://doi.org/10.1080/07366290008934701 CrossRefGoogle Scholar
  11. 11.
    Srinivasan TG, Vijayasaradhi S, Dhamodaran R, Suresh A, Vasudeva Rao PR (1998) Third phase formation in extraction of thorium nitrate by mixtures of trialkyl phosphates. Solvent Extr Ion Exch 16(4):1001–1011.  https://doi.org/10.1080/07366299808934565 CrossRefGoogle Scholar
  12. 12.
    Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106.  https://doi.org/10.1016/S0376-7388(99)00040-X CrossRefGoogle Scholar
  13. 13.
    Pabby AK, Sastre AM (2013) State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Membr Sci 430:263–303.  https://doi.org/10.1016/j.memsci.2012.11.060 CrossRefGoogle Scholar
  14. 14.
    Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, Dey PK (2007) Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor. J Membr Sci 300:131–136.  https://doi.org/10.1016/j.memsci.2007.05.018 CrossRefGoogle Scholar
  15. 15.
    Rathore NS, Sonawane JV, Kumar AK, Venugopalan AK, Singh RK, Bajpai DD, Shukla JP (2001) Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes. J Membr Sci 189:119–128.  https://doi.org/10.1016/s0376-7388(01)00406-9 CrossRefGoogle Scholar
  16. 16.
    Drioli E, Criscuoli A, Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities. Membrane science and technology series, vol 11. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Drioli E, Curcio E, di Profio G (2005) State of the art and recent progresses in membrane contactors. Chem Eng Res Des 83(3):223–233.  https://doi.org/10.1205/cherd.04203 CrossRefGoogle Scholar
  18. 18.
    Drioli E, Stankiewicz AI, Macedonio F (2011) Membrane engineering in process intensification—an overview. J Membr Sci 380(1):1–8.  https://doi.org/10.1016/j.memsci.2011.06.043 CrossRefGoogle Scholar
  19. 19.
    Sastre AM, Pabby AK (2015) Membrane applications in industrial waste management (including nuclear), environmental engineering and future trends in membrane science. In: Pabby AK, Rizvi SSH, Sastre AM (eds) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 823–1145Google Scholar
  20. 20.
    Dixit S, Chinchale R, Govalkar S, Mukhopadhyay S, Shenoy KT, Rao H, Ghosh SK (2013) A mathematical model for size and number scale up of hollow fiber modules for the recovery of uranium from acidic nuclear waste using the DLM technique. Sep Sci Technol 48(16):2444–2453.  https://doi.org/10.1080/01496395.2013.807825 CrossRefGoogle Scholar
  21. 21.
    Dixit S, Mukhopadhyay S, Govalkar S, Shenoy KT, Rao H, Ghosh SK (2012) A mathematical model for pertraction of uranium in hollow fiber contactor using TBP. Desalin Water Treat 38:195–206.  https://doi.org/10.1080/19443994.2012.664359 CrossRefGoogle Scholar
  22. 22.
    Bernardo P, Clarizia G (2011) Potential of membrane operations in redesigning industrial processes. The ethylene oxide manufacture. Chem Eng Trans 25(2):617–622Google Scholar
  23. 23.
    Pabby AK, Swain B, Sastre AM (2017) Recent advances in smart integrated membrane assisted liquid extraction technology. Chem Eng Process Process Intensif 120:27–56.  https://doi.org/10.1016/j.cep.2017.06.006 CrossRefGoogle Scholar
  24. 24.
    Hu S-YB, Wiencek JM (1998) Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor. AIChE J 44(3):570–581.  https://doi.org/10.1002/aic.690440308 CrossRefGoogle Scholar
  25. 25.
    Shukla JP, Kumar A, Singh RK, Iyer RH (1996) Separation of radiotoxic actinides from reprocessing wastes with liquid membranes. In: Bartsch RA, Way JD (eds) Chemical separations with liquid membranes. ACS symposium series, vol 642. American Chemical Society, pp 391–408.  https://doi.org/10.1021/bk-1996-0642.ch027
  26. 26.
    Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A (2009) Application of pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) for recovery of Cr(III) from alkaline solutions. Sep Purif Technol 66(3):586–590.  https://doi.org/10.1016/j.seppur.2009.01.012 CrossRefGoogle Scholar
  27. 27.
    Gonzalez R, Cerpa A, Alguacil FJ (2010) Nickel(II) removal by mixtures of Acorga M5640 and DP8R in pseudo-emulsion based hollow fiber with strip dispersion technology. Chemosphere 81(9):1164–1169.  https://doi.org/10.1016/j.chemosphere.2010.08.054 CrossRefGoogle Scholar
  28. 28.
    Ho WSW, Wang B, Neumuller TE, Roller J (2001) Supported liquid membranes for removal and recovery of metals from waste waters and process streams. Environ Prog 20(2):117–121.  https://doi.org/10.1002/ep.670200215 CrossRefGoogle Scholar
  29. 29.
    De Agreda D, Garcia-Diaz I, López F, Alguacil F (2011) Supported liquid membranes technologies in metals removal from liquid effluents. Rev Met 47(2):146–168CrossRefGoogle Scholar
  30. 30.
    Sengupta A, Basu R, Sirkar KK (1988) Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34(10):1698–1708.  https://doi.org/10.1002/aic.690341014 CrossRefGoogle Scholar
  31. 31.
    Ho WSW (2003) Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion. Ann N Y Acad Sci 984(1):97–122.  https://doi.org/10.1111/j.1749-6632.2003.tb05995.x CrossRefGoogle Scholar
  32. 32.
    Tkac P, Matteson B, Bruso J, Paulenova A (2008) Complexation of uranium(VI) with acetohydroxamic acid. J Radioanal Nucl Chem 277(1):31–36.  https://doi.org/10.1007/s10967-008-0705-8 CrossRefGoogle Scholar
  33. 33.
    Mckay HAC (1990) The PUREX process. In: Schulz WW, Bender KP, Burger LL, Navratil JD (eds) Science and technology of tributyl phosphate. CRC Press, Boca Raton, pp 1–9Google Scholar
  34. 34.
    Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125.  https://doi.org/10.1080/15422119.2010.549760 CrossRefGoogle Scholar
  35. 35.
    Nash KL, Barrans RE, Chiarizia R, Dietz ML, Jensen MP, Rickert PG, Moyer BA, Bonnesen PV, Bryan JC, Sachleben RA (2000) Fundamental investigations of separations science for radioactive materials. Solvent Extr Ion Exch 18(4):605–631.  https://doi.org/10.1080/07366290008934700 CrossRefGoogle Scholar
  36. 36.
    Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Venugopalan AK, Changrani RD, Dey PK, Venkataramani B (2005) Application of hollow fiber contactor in nondispersive solvent extraction of Pu(IV) by TBP. Sep Sci Technol 40(9):1911–1926.  https://doi.org/10.1081/ss-200064546 CrossRefGoogle Scholar
  37. 37.
    Musikas C, Schulz WW, Liljenzin J (2004) Solvent extraction in nuclear science and technology. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice, revised and expanded. Marcel Dekker, Inc., New York, pp 507–558Google Scholar
  38. 38.
    Kweto B, Groot DR, Stassen L, Suthiram J, Zeevaart JR (2012) The use of ammonium carbonate as lixiviant in uranium leaching. In: Paper presented at the ALTA, Perth, Australia, 31 May–1 June 2012Google Scholar
  39. 39.
    Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130.  https://doi.org/10.1016/j.desal.2013.02.022 CrossRefGoogle Scholar
  40. 40.
    Singh SK, Misra SK, Sudersanan M, Dakshinamoorthy A, Munshi SK, Dey PK (2007) Carrier-mediated transport of uranium from phosphoric acid medium across TOPO/n-dodecane-supported liquid membrane. Hydrometallurgy 87:190–196.  https://doi.org/10.1016/j.hydromet.2007.03.004 CrossRefGoogle Scholar
  41. 41.
    Jablonski BB, Leyden DE (1978) Flow photometric monitor for uranium in carbonate solutions. Anal Chem 50(3):404–407.  https://doi.org/10.1021/ac50025a012 CrossRefGoogle Scholar
  42. 42.
    Hurst FJ, Crouse DJ (1960) Recovery of uranium from di(2-ethylhexyl)phosphoric acid (Dapex) extractant with ammonium carbonate. Oak Ridge National LaboratoryGoogle Scholar
  43. 43.
    Baran V (1982) Ammonium uranyl carbonates—complex compounds with variable coordination number. Collect Czechoslov Chem Commun 47(5):1269–1281.  https://doi.org/10.1135/cccc19821269 CrossRefGoogle Scholar
  44. 44.
    Davis Jr W (1961) Thermodynamics of extraction of nitric acid by tri-n-butyl phosphate-hydrocarbon diluent solutions (trans: Chemical Technology Division ORNL). U.S. Atomic Energy Commission, Oak Ridge National LaboratoryGoogle Scholar
  45. 45.
    Kotz JC, Treichel PM, Townsend J (2012) Chemistry and chemical reactivity. Cengage Learning, BostonGoogle Scholar
  46. 46.
    Fedoroff BT, Sheffield OE, Clift GD, Reese EF (1962) Encyclopedia of explosives and related items, vol 2. Army Armament Research Development and Engineering Center, Picatinny Arsenal NJ Warheads Energetics and Combat Support Armaments Center, Morris CountyGoogle Scholar
  47. 47.
    Marlair G, Kordek M-A (2005) Safety and security issues relating to low capacity storage of AN-based fertilizers. J Hazard Mater 123(1):13–28.  https://doi.org/10.1016/j.jhazmat.2005.03.028 CrossRefGoogle Scholar
  48. 48.
    Chaturvedi S, Dave PN (2013) Review on thermal decomposition of ammonium nitrate. J Energ Mater 31(1):1–26.  https://doi.org/10.1080/07370652.2011.573523 CrossRefGoogle Scholar
  49. 49.
    Bachmann HG, Seibold K, Dokuzoquz HZ, Muller HM (1975) X-ray powder diffraction and some thermodynamic data for (NH4)4[UO2(CO3)3]. J Inorg Nucl Chem 37:735–737.  https://doi.org/10.1016/0022-1902(75)80530-6 CrossRefGoogle Scholar
  50. 50.
    Awan IZ, Khan AQ (2015) Uranium—the element: its occurrence and uses. J Chem Soc Pak 37(6):1056–1080Google Scholar
  51. 51.
    Rodden CJ (1950) Analytical chemistry of the Manhattan project, vol 1. McGraw-Hill, New YorkGoogle Scholar
  52. 52.
    Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(VI) with 2-(5-bromo-2-pyridalazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79CrossRefGoogle Scholar
  53. 53.
    Fuwa K, Valle BL (1963) The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer–Lambert law. Anal Chem 35(8):942–946.  https://doi.org/10.1021/ac60201a006 CrossRefGoogle Scholar
  54. 54.
  55. 55.
    Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2016) Uranium recovery from simulated molybdenum-99 production residue using non-dispersive membrane based solvent extraction. Hydrometallurgy 164:330–333.  https://doi.org/10.1016/j.hydromet.2016.07.001 CrossRefGoogle Scholar
  56. 56.
    Paulenova A, Vandegrift GF, Czerwinski KR (2009) Plutonium chemistry in the UREX+ separation processes. Oregon State UniversityGoogle Scholar
  57. 57.
    Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2017) Influence of radiation on a polypropylene membrane contactor used during MBSX of uranium from nitric acid solutions. In: Paper presented at the uranium 2017 international conference, Swakopmund, Namibia, 11–12 SeptemberGoogle Scholar
  58. 58.
    Fouad EA, Bart HJ (2008) Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor. J Membr Sci 307(2):156–168.  https://doi.org/10.1016/j.memsci.2007.09.043 CrossRefGoogle Scholar
  59. 59.
    Reis MTA, Carvalho JMR (2004) Modelling of zinc extraction from sulphate solutions with bis(2-ethylhexyl)thiophosphoric acid by emulsion liquid membranes. J Membr Sci 237(1):97–107.  https://doi.org/10.1016/j.memsci.2004.02.025 CrossRefGoogle Scholar
  60. 60.
    Lee SC, Ahn BS, Lee WK (1996) Mathematical modeling of silver extraction by an emulsion liquid membrane process. J Membr Sci 114(2):171–185.  https://doi.org/10.1016/0376-7388(95)00315-0 CrossRefGoogle Scholar
  61. 61.
    Whitten KW, Gailey KD (1981) General chemistry with qualitative analysis, 4th edn. Saunders College Publishing, Harcourt Brace College Publishers, OrlandoGoogle Scholar
  62. 62.
    Sonawane JV, Pabby AK, Sastre AM (2007) Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300(1–2):147–155.  https://doi.org/10.1016/j.memsci.2007.05.016 CrossRefGoogle Scholar
  63. 63.
    D’Elia NA, Dahuron L, Cussler EL (1986) Liquid–liquid extractions with microporous hollow fibers. J Membr Sci 29(3):309–319.  https://doi.org/10.1016/s0376-7388(00)81269-7 CrossRefGoogle Scholar
  64. 64.
    Rout PC, Sarangi K (2013) A comparative study on extraction of Mo(VI) using both solvent extraction and hollow fiber membrane technique. Hydrometallurgy 133(Supplement C):149–155.  https://doi.org/10.1016/j.hydromet.2013.01.005 CrossRefGoogle Scholar
  65. 65.
    Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic, New YorkGoogle Scholar
  66. 66.
    Jindra J, Škramovský S (1966) Herstellung und wärmeverhalten binärer uranylcarbonate. Collect Czechoslov Chem Commun 31(7):2639–2645.  https://doi.org/10.1135/cccc19662639 CrossRefGoogle Scholar
  67. 67.
    Amayri S (2002) Charakterisierung und Löslichkeit von Erdalkaliuranylcarbonaten M2[UO2(CO3)3xH2O; M: Mg, Ca, Sr, Ba. Forschungszentrum Rossendorf, RossendorfGoogle Scholar
  68. 68.
    Leay L, Bower W, Horne G, Wady P, Baidak A, Pottinger M, Nancekievil M, Smith AD, Watson S, Green PR, Lennox B, LaVerne JA, Pimblott SM (2015) Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl Instrum Methods Phys Res B 343:62–69.  https://doi.org/10.1016/j.nimb.2014.11.028 CrossRefGoogle Scholar
  69. 69.
    Arai Y, Ogino H, Takeuchi M, Kase T, Nakajima Y (2011) Study on cleaning solvents using activated alumina in PUREX process. Proc Radiochim Acta 1(1):71–74.  https://doi.org/10.1524/rcpr.2011.0012 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Waste Research, Applied ChemistrySouth African Nuclear Energy Corporation SOC Ltd (Necsa)PretoriaSouth Africa
  2. 2.Chemical Resource BeneficiationNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations