Measurement of 99Mo production cross-section from the 100Mo(n,2n) reaction with quasi monoenergetic neutron based on the 9Be(p,n) reaction

  • A. Gopalakrishna
  • G. N. Kim
  • H. Naik
  • K. Kim
  • B. K. Nayak
  • Muhammad Zaman
Article
  • 15 Downloads

Abstract

The production cross-section of the medical isotope, 99Mo from the enriched 100Mo(n,2n) reaction with the average neutron energies of 21.9 and 26.5 MeV has been determined for the first time by using an off-line γ-ray spectrometric technique. The average neutron energies were generated by using the 9Be(p,n) reaction with the proton energies of 35 and 45 MeV from the MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences (KIRAMS) at Seoul, South Korea. The 100Mo(n,2n) reaction cross-section as a function of neutron energy was also calculated theoretically by using the computer code TALYS-1.8 and EMPIRE-3.2 Malta. The experimental results are in close agreement with the theoretical values from TALYS-1.8. However, the present data at the neutron energy of 21.9 MeV is slightly lower and at 26.5 MeV is higher than the values from EMPIRE-3.2 Malta.

Keywords

100Mo(n,2n)99Mo reaction cross-sections 9Be(p,n) reaction neutron Off-line γ-ray spectrometric technique TALYS-1.8 EMPIRE-3.2 malta 

Notes

Acknowledgements

The authors would like to express their sincere thanks to the staff of the MC-50 Cyclotron in the KIRAMS for the excellent operation and their support during the experiment. This research was partly supported by the National Research Foundation of Korea through a grant provided by the Ministry of Science, ICT &Future Planning (NRF-2017R1D1A1B03030484) and by the National R&D Program through the Dong-nam Institute of Radiological and Medical Sciences (50496-2018). One of the authors (H. Naik) was supported by the Korean Brain Pool Program (No. 171S-1-3-1786) of Korean Federation of Science and Technology Societies (KOFST).

References

  1. 1.
    Groth S (2000) Nuclear application in health care-lasting benefits. IAEA Bulletin, ViennaGoogle Scholar
  2. 2.
    International Atomic Energy Agency (2004) Nuclear technology review, annex VIII: the socio-economics of nuclear applications: a perspective. International Atomic Energy Agency, Vienna, pp 85–94Google Scholar
  3. 3.
    NuDat 2.6 (2011) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/
  4. 4.
    Browne E, Tuli JK (2017) Nuclear Data Sheets for A = 99. Nucl Data Sheets 145:25CrossRefGoogle Scholar
  5. 5.
    Chechev VP, Bé M (2014) Radioactive equilibrium: 99Mo/99mTc decay characteristics. Appl Radiat Isot 87:132–136CrossRefGoogle Scholar
  6. 6.
    Ruth T (2009) Accelerating production of medical isotopes. Nature 457:536–537CrossRefGoogle Scholar
  7. 7.
    International Atomic Energy Agency (2010) Nuclear technology review, annex VIII: production and supply of molybdenum-99. IAEA/NTR/2010, Vienna, pp 150–167Google Scholar
  8. 8.
    Gambini PJ, Cabral P, Alonso O, Savio E, Figueroa SD, Zhang X, Ma L, Deutscher SL, Quinn TP (2011) Evaluation of 99mTc glucarate as a breast cancer Imaging agent in a xenograft animal model. Nucl Med Biol 38:255CrossRefGoogle Scholar
  9. 9.
    Tera´n MA, Martı´nez E, Reyes AL, Paolino A, Vital M, Espero´n P, Pacheco JP, Savio E (2011) Biological studies in animal models using [99mTc] (CO)3 recombinant annexin V as diagnostic agent of apoptotic processes. Nucl Med Biol 38:279CrossRefGoogle Scholar
  10. 10.
    Lagunas-Solar MC, Zeng NX, Mirchad I, Castaneda CM (1996) Cyclotron production of Molybdenum- 99 via proton-induced Uranium-238 fission. Am Nucl Soc 74:34Google Scholar
  11. 11.
    Gagnon K, Benard F, Kovacs F, Ruth TJ, Schaffer P, Wilson JS, McQuarrie SA (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x)99Mo, 99mTc and 99gTc excitation function from 8 to 18 MeV. J Nucl Med Biol 38:907–916CrossRefGoogle Scholar
  12. 12.
    Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Joshi PV, Nimje VT, Mittal KC, Goswami A, Venugopal V, Kailas S (2013) An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J Radioanal Nucl Chem 295:807–816CrossRefGoogle Scholar
  13. 13.
    Mughabghab SF, Divadeenam M, Holden NE (1981) Neutron resonance and thermal cross sections, vol I. Academic Press, New YorkGoogle Scholar
  14. 14.
    Nagai Y, Nakahara Y, Kawabata M, Hatsukawa Y, Hashimoto K, Saeki H, Motoishi S, Ohta A, Shiina T, Kawauchi Y (2017) Quality of 99mTcO4 from 99Mo produced by 100Mo(n,2n)99Mo. J Phys Soc Jpn 86:053202CrossRefGoogle Scholar
  15. 15.
    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest RA, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay OO, Herman M, Hlavač S, Katõ K, Lalremruata B, Lee YO, Makinaga A, Matsumoto K, Mikhaylyukova M, Pikulina G, Pronyaev VG, Saxena A, Schwerer O, Simakov SP, Soppera N, Suzuki R, Takćs S, Tao X, Taova S, Tárkányi F, Varlamov VV, Wang J, Yang SC, Zerkin V, and Zhuang Y (2014) Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International Collaboration between Nuclear Reaction Data Centres (NRDC). Nucl Data Sheets 120: 272–276. http://www-nds.iaea.org/exfor
  16. 16.
    Paul EB, Clarke RL (1953) Cross section measurements of reactions induced by neutrons of the 14,5 MeV energy. Can J Phys 31:267–277CrossRefGoogle Scholar
  17. 17.
    Khurana CS, Hans HS (1961) Cross sections for (n,2n) reactions at 14.8 MeV. Nucl Phys 28:560–569CrossRefGoogle Scholar
  18. 18.
    Strohal P, Cindro N, Eman B (1962) Reaction mechanism and shell effects from the interaction of 14.6 MeV neutrons with nuclei. Nucl Phys 30:49–67CrossRefGoogle Scholar
  19. 19.
    Csikai J, Peto G (1967) Influence of direct inelastic scattering on (n,2n) cross-sections. Acta Phys Acad Sci Hung Tomus 23:87–94CrossRefGoogle Scholar
  20. 20.
    Cuzzocrea P, Perillo E, Notarrigo S (1967) Activation cross-sections of Mo isotopes for 14.1 MeV neutrons. Nucl Phys A 103:616–624CrossRefGoogle Scholar
  21. 21.
    Lu WD, Ranakumar N, Fink RW (1970) Activation cross sections for (n,2n) reactions at 14.4 MeV in the region Z = 40-60. Precision measurements and systematics. Phys Rev C1:350Google Scholar
  22. 22.
    Qaim SM (1972) Activation cross sections, isomeric cross-section ratios and systematics of (n,2n) reactions at14-15 MeV. Nucl Phys A 185:614–624CrossRefGoogle Scholar
  23. 23.
    Araminowicz J, Dresler J (1973) Investigation of the (n,2n) reactions at 14.6 MeV. A brief Progress Report INR-1464:14Google Scholar
  24. 24.
    Maslov GN, Nasyrov F, Pashkin NF (1974) Experimental cross-sections for nuclear reactions involving neutrons with energies of about 14 MeV. Report INDC(CCP)-42:10Google Scholar
  25. 25.
    Fujino Y, Hyakutake M, Kumabe I (1977) Activation cross sections on zirconium and molybdenum isotopes induced by 14,8 MeV neutrons. Prog: Japanese report to NEANDC, No. 51, p. 60, FranceGoogle Scholar
  26. 26.
    Amemiya S, Ishibashi K, Katoh T (1982) Neutron activation cross section of molybdenum isotopes at 14.8 MeV. J Nucl Sci Tech 19:781CrossRefGoogle Scholar
  27. 27.
    Atsumi H, Miyade H, Yoshi M, Ishii T, Yamamoto H, Kawade K, Katoh T, Takahashi A, Iida T (1984) Measurement of activation cross-sections of fusion reactor at 14.6 MeV. Progress Report No. NEANDC(J)-106/U, 55, 8409Google Scholar
  28. 28.
    Rahman MM, Qaim SM (1985) Excitation functions of some neutron threshold reactions on isotopes of molybdenum. Nucl Phys A 435:43–53CrossRefGoogle Scholar
  29. 29.
    Molla NI, Rahman MM, Khatun S, Fazlul Hoque AKM, Miah Rahezuddin, Khan Ayesha Akhter (1986) Activation cross sections for some isotopes of Mg, Ti, V, Ni, Zr and Mo at 14 MeV neutrons. Report No. INDC (BAN)-003Google Scholar
  30. 30.
    Marcinkowski A, Stankiewicz K, Garuska U, Herman M (1986) Cross section of fast neutron induced reactions on molybdenum isotopes. Z Phys A 323:91–96Google Scholar
  31. 31.
    Zhou M, Zhang Y, Wang C, Zhang L, Chen Y, Zhou S, Zhang S, Xie K, Zhou S, Chen X, Zhang Y, Yan Q (1987) Shell effect from the cross section of the (n,2n)reaction produced by 14.6 MeV neutrons. Chin Nucl Phys 9:34Google Scholar
  32. 32.
    Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, Kawade K, Yamamoto H, Katoh T (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI-1312Google Scholar
  33. 33.
    Kong X, Wang Y, Yuan J, Wang X, Yang J, Wang J (1991) The cross section measurements for the Mo-100(n,2n)Mo-99, Mo-96(n, p)Nb-96 and Mo- 92(n, a)Zr-89 m + g reaction. High Energy Phys Nucl Phys 15:549Google Scholar
  34. 34.
    Osman KT, Habbani FI (1996) Measurement and study of (n,p) reaction cross sections for Cr, Ti, Ni, Co, Zr and Mo isotopes using 14.7 MeV neutrons. INDC(SUD)-001Google Scholar
  35. 35.
    Thiep TD, Do NV, An TT, Sona NN (2003) Nuclear reactions with 14 MeV neutrons and bremsstrahlungs in giant dipole resonance (GDR) region. J Nucl Phys A7(22):568c–572cCrossRefGoogle Scholar
  36. 36.
    Reimer P, Avrigeanu V, Chuvaev SV, Filatenkov AA, Glodariu T, Koning A, Plompen AJM, Qaim SM, Smith DL, Weigmann H (2005) Reaction mechanisms of fast neutrons on stable Mo isotopes below 21 MeV. Phys Rev C 71:044617–044620CrossRefGoogle Scholar
  37. 37.
    Semkova V, Nolte R (2014) Measurement of neutron activation cross sections on Mo isotopes in the energy range from 7 MeV to 15 MeV. Eur Phys J Web Conf 66:03077–03080CrossRefGoogle Scholar
  38. 38.
    Filatenkov AA (2016) Neutron activation cross sections measured at KRI in neutron energy region 13.4-14.9 MeV. INDC(CCP)-0460Google Scholar
  39. 39.
    Badwar S, Ghosh R, Lawriniang BM, Vansola V, Sheela YS, Naik H, Naik Y, Suryanarayana SV, Jyrwa B, Ganesan S (2017) Measurement of formation cross-section of 99Mo from the 98Mo(n, γ) and 100Mo(n,2n) reactions. Appl Radiat Iso 129:117–123CrossRefGoogle Scholar
  40. 40.
    Herman M, Capote R, Sin M, Trkov A, Carlson BV, Oblozinský P, Mattoon CM, Wieke H, Hoblit S, Young-Sik C, Nobrel GPA, Plujko VA, Zerkin V (2013) EMPIRE-3.2 malta Modular system for nuclear reaction calculations. Tech Rep INDC (NDS)-0642, BNL-101378-2013Google Scholar
  41. 41.
    Koning AJ, Hilaire S, Duijvestijn MC (2015) TALYS-1.8, a nuclear reaction program (Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands). http://www.talys.eu
  42. 42.
    Naik H, Kim GN, Kim K, Zaman M, Nadeem M, Sahid M (2018) Neutron-induced reaction cross-sections of 93Nb with fast neutron based on 9Be(p, n) reaction. Nucl Phys A 970:156–168CrossRefGoogle Scholar
  43. 43.
    Audi G, Kondev FG, Wang M, Pfeiffer B, Sun X, Blachot J, MacCormick M (2012) The Nubase 2012 evaluation of nuclear properties. Chin Phys C 36:1157–1286CrossRefGoogle Scholar
  44. 44.
    Firestone RB (2007) Nuclear data sheets for A = 24. Nucl Data Sheets 108:2319–2392CrossRefGoogle Scholar
  45. 45.
    Hendricks JS, Gregg WM, Michael IF, Michael RJ, Russell CJ, Joe WD, Joshua PF, Denise BP, Laurie SW, William, WM (2008) MCNPX 2.6.0 Extensions, LAN Report LA-UR-08-2216, Los Alamos. http://mcnpx.lanl.gov/
  46. 46.
    Uwamino Y, Sugita H, Kondo Y, Nakamura T (1992) Measurement of neutron activation cross sections of energy up to 40 MeV using semi-monoenergetic p-Be neutrons. Nucl Sci and Eng 111:391–403CrossRefGoogle Scholar
  47. 47.
    Uwamino Y, Ohkuba T, Tanashi M, Torii A, Nakamura T (1988) Semi-monoenergetic neutron field for activation experiments up to 40 MeV. Nucl Instru Meth A 271:546–552CrossRefGoogle Scholar
  48. 48.
    Qtool: calculation of reaction Q-values and threshold, Los Alamos National Library. http://cdfe.sinp.msu.ru/services/calc_thr/calc_thr.html
  49. 49.
    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 nuclear data for science and technology: cross sections. Covariances Fission Product Yields Decay Data 112:2887–2996Google Scholar
  50. 50.
    Ge ZG, Zhao ZX, Xia HH, Zhuang YX, Liu TJ, Zhang JS, Wu HC (2011) The updated version of Chinese Evaluated Nuclear Data Library (CENDL-3.1). J Korean Phys Soc 59(2):1052–1056CrossRefGoogle Scholar
  51. 51.
    Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellet MA, Mills RW, Nordborg C, Pescarini M, Rugama Y, Rullhusen P (2011) Status of the JEFF Nuclear Data Library. J Korean Phys Soc 59(2):1057–1062CrossRefGoogle Scholar
  52. 52.
    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matsunobu H, Zukeran A, Kamada S (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Tech 48:130CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Medical Cyclotron FacilityBoard of Radiation and Isotope TechnologyMumbaiIndia
  2. 2.Physical and Mathematical SciencesHomi Bhabha National InstituteMumbaiIndia
  3. 3.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  5. 5.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations