Evaluation of new 99mTc-labeled HYNIC-bombesin analogue for prostate cancer imaging

  • Mohsen Mohammadgholi
  • Farzaneh Rezazadeh
  • Saeid Abediankenari
  • Seyed Mohammad Abedi
  • Iman Emrarian
  • Narjes Jafari
  • Ramezan Behzadi
  • Nourollah Sadeghzadeh
Article
  • 14 Downloads

Abstract

In this study, we introduce a new 99mTc-radiolabeled bombesin derivative for imaging of prostate cancer (PC). We used 6-hydrazinonicotinamide (HYNIC) as bi-functional chelating agent and tricine/ethylenediamine diacetic acid (EDDA) as an exchange co-ligands. Radiolabeling was achieved with high purity and was accompanied with high solution and serum stability. Cellular binding study demonstrated specific binding and internalization of radioconjugate in cultured PC3 cells. In vivo experiments showed fast blood clearance with kidney excretion. Blocking experiments showed decreased uptake of radiopeptide in tumor and pancreas. The results of the imaging using planar SPECT also confirmed suitable tumour uptake for PC3 xenograft nude mice.

Keywords

Bombesin HYNIC GRPR Prostate cancer 99mTc 

Notes

Acknowledgements

This research was part of the PhD Thesis of Mohsen Mohammadgholi and was supported by a Grant (No. 1392) from Mazandaran University of Medical Sciences, Sari, Iran. We would also like to thank Dr. Hassan Ghorbantabar Omrani for his help with the preparation of 99m-Technetium from Hazrat Fatemeh Zahra Heart Centre.

References

  1. 1.
    Applegate CC, Rowles JL, Ranard KM, Jeon S, Erdman JW (2017) Soy consumption and the risk of prostate cancer in men: an updated systematic review and meta-analysis. FASEB J 31(1 Supplement):735–790Google Scholar
  2. 2.
    Brunner C, Davies NM, Martin RM, Eeles R, Easton D, Kote-Jarai Z, Olama A, Amin A, Benlloch S, Muir K (2017) Alcohol consumption and prostate cancer incidence and progression: a Mendelian randomisation study. Int J Cancer 140(1):75–85CrossRefGoogle Scholar
  3. 3.
    Schroeder RPJ, Van Weerden WM, Bangma C, Krenning EP, de Jong M (2009) Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods 48(2):200–204CrossRefGoogle Scholar
  4. 4.
    De Vincentis G, Remediani S, Varvarigou AD, Di Santo G, Iori F, Laurenti C, Scopinaro F (2004) Role of 99mTc-bombesin scan in diagnosis and staging of prostate cancer. Cancer Biother Radiopharm 19(1):81–84CrossRefGoogle Scholar
  5. 5.
    Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89CrossRefGoogle Scholar
  6. 6.
    De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42(1):18–23CrossRefGoogle Scholar
  7. 7.
    Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SCrossRefGoogle Scholar
  8. 8.
    Hong H, Zhang Y, Sun J, Cai W (2010) Positron emission tomography imaging of prostate cancer. Amino Acids 39(1):11–27CrossRefGoogle Scholar
  9. 9.
    Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24(4):389–427CrossRefGoogle Scholar
  10. 10.
    Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24(3):357–397CrossRefGoogle Scholar
  11. 11.
    Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32(7):733–740CrossRefGoogle Scholar
  12. 12.
    Faintuch BL, Teodoro R, Duatti A, Muramoto E, Faintuch S, Smith CJ (2008) Radiolabeled bombesin analogs for prostate cancer diagnosis: preclinical studies. Nucl Med Biol 35(4):401–411CrossRefGoogle Scholar
  13. 13.
    de Aguiar Ferreira C, Fuscaldi LL, Townsend DM, Rubello D, de Barros ALB (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 87:58–72CrossRefGoogle Scholar
  14. 14.
    Smith C, Volkert W, Hoffman T (2003) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30(8):861–868CrossRefGoogle Scholar
  15. 15.
    Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi J-C, Maina T (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48(1):100–110CrossRefGoogle Scholar
  16. 16.
    Van de Wiele C, Dumont F, Broecke RV, Oosterlinck W, Cocquyt V, Serreyn R, Peers S, Thornback J, Slegers G, Dierckx RA (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med Mol Imaging 27(11):1694–1699CrossRefGoogle Scholar
  17. 17.
    Van de Wiele C, Phonteyne P, Pauwels P, Goethals I, Van den Broecke R, Cocquyt V, Dierckx RA (2008) Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med 49(2):260–264CrossRefGoogle Scholar
  18. 18.
    Däpp S, Garayoa EG, Maes V, Brans L, Tourwé DA, Müller C, Schibli R (2011) PEGylation of 99mTc-labeled bombesin analogues improves their pharmacokinetic properties. Nucl Med Biol 38(7):997–1009CrossRefGoogle Scholar
  19. 19.
    García Garayoa E, Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, Schibli R, Schubiger PA (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19(12):2409–2416CrossRefGoogle Scholar
  20. 20.
    Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, Schubiger PA, Schibli R, Garayoa EG (2008) Novel glycated [99mTc(CO)3]-labeled bombesin analogues for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem 19(12):2432–2439CrossRefGoogle Scholar
  21. 21.
    de Barros ALB, das Graças Mota L, de Aguiar Ferreira C, Corrêa NCR, de Góes AM, Oliveira MC, Cardoso VN (2013) 99mTc-labeled bombesin analog for breast cancer identification. J Radioanal Nucl Chem 295(3):2083–2090CrossRefGoogle Scholar
  22. 22.
    Liolios CC, Fragogeorgi EA, Zikos C, Loudos G, Xanthopoulos S, Bouziotis P, Paravatou-Petsotas M, Livaniou E, Varvarigou AD, Sivolapenko GB (2012) Structural modifications of 99mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int J Pharm 430(1):1–17CrossRefGoogle Scholar
  23. 23.
    Baidoo KE, Lin K-S, Zhan Y, Finley P, Scheffel U, Wagner HN (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 9(2):218–225CrossRefGoogle Scholar
  24. 24.
    de Barros ALB, das Graças Mota L, de Aguiar Ferreira C, de Oliveira MC, de Góes AM, Cardoso VN (2010) Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification. Bioorg Med Chem Lett 20(21):6182–6184CrossRefGoogle Scholar
  25. 25.
    Shi J, Jia B, Liu Z, Yang Z, Yu Z, Chen K, Chen X, Liu S, Wang F (2008) 99mTc-labeled bombesin (7–14) NH2 with favorable properties for SPECT imaging of colon cancer. Bioconjug Chem 19(6):1170–1178CrossRefGoogle Scholar
  26. 26.
    Brans L, Maes V, García-Garayoa E, Schweinsberg C, Daepp S, Bläuenstein P, August Schubiger P, Schibli R, Tourwé DA (2008) Glycation methods for bombesin analogs containing the (NaHis) Ac chelator for 99mTc(CO)3 radiolabeling. Chem Biol Drug Des 72(6):496–506CrossRefGoogle Scholar
  27. 27.
    Breeman WAP, de Jong M, Erion JL, Bugaj JE, Srinivasan A, Bernard BF, Kwekkeboom DJ, Visser TJ, Krenning EP (2002) Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43(12):1650–1656Google Scholar
  28. 28.
    de Visser M, Bernard HF, Erion JL, Schmidt MA, Srinivasan A, Waser B, Reubi J-C, Krenning EP, de Jong M (2007) Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging 34(8):1228–1238CrossRefGoogle Scholar
  29. 29.
    Okarvi SM, Jammaz IA (2012) Preparation and evaluation of bombesin peptide derivatives as potential tumor imaging agents: effects of structure and composition of amino acid sequence on in vitro and in vivo characteristics. Nucl Med Biol 39(6):795–804CrossRefGoogle Scholar
  30. 30.
    King R, Surfraz MB-U, Finucane C, Biagini SCG, Blower PJ, Mather SJ (2009) 99mTc-HYNIC-gastrin peptides: assisted coordination of 99mTc by amino acid side chains results in improved performance both in vitro and in vivo. J Nucl Med 50(4):591–598CrossRefGoogle Scholar
  31. 31.
    Sadeghzadeh N, Ahmadzadeh M, Erfani M (2013) Evaluation of a new radiolabeled bombesin derivative with 99mTc as potential targeted tumor imaging agent. J Radioanal Nucl Chem 298(1):287–293CrossRefGoogle Scholar
  32. 32.
    Shirmardi S, Gandomkar M, Mazidi M, Shafiei M, Maragheh MG (2011) Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent. J Radioanal Nucl Chem 288(2):327–335CrossRefGoogle Scholar
  33. 33.
    Sadeghzadeh N, Gandomkar M, Najafi R, Shafiei M, Ebrahimi SS, Shafiee A, Larijani B (2010) Preparation and evaluation of a new 99mTc labeled bombesin derivative for tumor imaging. J Radioanal Nucl Chem 283(1):181–187CrossRefGoogle Scholar
  34. 34.
    Meszaros LK, Dose A, Biagini SCG, Blower PJ (2011) Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium. Dalton Trans 40(23):6260–6267CrossRefGoogle Scholar
  35. 35.
    Zhang Y-M, Liu N, Zhu Z-H, Rusckowski M, Hnatowich DJ (2000) Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med 27(11):1700–1707CrossRefGoogle Scholar
  36. 36.
    Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46(3):195Google Scholar
  37. 37.
    Teodoro R, Faintuch BL, Núñez EGF, Queiróz RG (2011) Neurotensin (8–13) analogue: radiolabeling and biological evaluation using different chelators. Nucl Med Biol 38(1):113–120CrossRefGoogle Scholar
  38. 38.
    Omrani HG, Rezazadeh F, Sadeghzadeh N (2017) Preparation and radiochemical evaluation of 99mTc-HYNIC-[Lys3, Tyr4] bombesin (3–14) for prostate cancer detection. J Mazandaran Univ Med Sci 26(144):367–372 (Persian) Google Scholar
  39. 39.
    Bauer R, Pabst H-W (1982) Tc-generators: yield of 99mTc and ratio to inactive 99Tc. Eur J Nucl Med 7(1):35–36CrossRefGoogle Scholar
  40. 40.
    Maina T, Nock B, Nikolopoulou A, Sotiriou P, Loudos G, Maintas D, Cordopatis P, Chiotellis E (2002) [99mTc]demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med 29:742–753CrossRefGoogle Scholar
  41. 41.
    Welling MM, Visentin R, Feitsma HIJ, Lupetti A, Pauwels EKJ, Nibbering PH (2004) Infection detection in mice using 99mTc-labeled HYNIC and N2S2 chelate conjugated to the antimicrobial peptide UBI 29-41. Nucl Med Biol 31(4):503–509CrossRefGoogle Scholar
  42. 42.
    De K, Banerjee I, Sinha S, Ganguly S (2017) Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor. Peptides.  https://doi.org/10.1016/j.peptides.2017.01.002 Google Scholar
  43. 43.
    Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Ramírez FdM, Luna-Gutiérrez MA, Pedraza-López M, García-Becerra R, Ordaz-Rosado D (2009) Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat (49–57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375(1):75–83CrossRefGoogle Scholar
  44. 44.
    Varasteh Z, Velikyan I, Lindeberg G, Sörensen J, Larhed M, Sandström M, Selvaraju RK, Malmberg J, Tolmachev V, Orlova A (2013) Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging. Bioconjug Chem 24(7):1144–1153CrossRefGoogle Scholar
  45. 45.
    Ferro-Flores G, de Murphy CA, Rodriguez-Cortes J, Pedraza-Lopez M, Ramrez-Iglesias MT (2006) Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27(4):371–376CrossRefGoogle Scholar
  46. 46.
    Ananias HJ, Yu Z, Dierckx RA, van der Wiele C, Helfrich W, Wang F, Yan Y, Chen X, de Jong IJ, Elsinga PH (2011) 99mTechnetium-HYNIC(tricine/TPPTS)-Aca-bombesin (7–14) as a targeted imaging agent with microSPECT in a PC-3 prostate cancer xenograft model. Mol Pharm 8(4):1165–1173CrossRefGoogle Scholar
  47. 47.
    Ferro-Flores G, Luna-Gutiérrez M, Ocampo-García B, Santos-Cuevas C, Azorín-Vega E, Jiménez-Mancilla N, Orocio-Rodríguez E, Davanzo J, García-Pérez FO (2017) Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl Med Biol 48(6):36–44CrossRefGoogle Scholar
  48. 48.
    Xu X, Zhang J, Hu S, He S, Bao X, Ma G, Luo J, Cheng J, Zhang Y (2017) 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. Nucl Med Biol 48(6):69–75CrossRefGoogle Scholar
  49. 49.
    Santos-Cuevas C, Davanzo J, Ferro-Flores G, García-Pérez FO, Ocampo-García B, Ignacio-Alvarez E, Gómez-Argumosa E, Pedraza-López M (2017) 99mTc-labeled PSMA inhibitor: biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl Med Biol 52(9):1–6CrossRefGoogle Scholar
  50. 50.
    Liolios CC, Fragogeorgi EA, Zikos C, Loudos G, Xanthopoulos S, Bouziotis P, Paravatou-Petsotas M, Livaniou E, Varvarigou AD, Sivolapenko GB (2012) Structural modifications of 99mTc-labelled bombesin-like peptides for optimizing pharmacokinetics in prostate tumor targeting. Int J Pharm 430:1–17CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mohsen Mohammadgholi
    • 1
  • Farzaneh Rezazadeh
    • 1
  • Saeid Abediankenari
    • 2
  • Seyed Mohammad Abedi
    • 3
  • Iman Emrarian
    • 1
  • Narjes Jafari
    • 2
  • Ramezan Behzadi
    • 4
  • Nourollah Sadeghzadeh
    • 1
  1. 1.Department of Radiopharmacy, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  2. 2.Immunogenetics Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  3. 3.Department of Radiology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  4. 4.North Research Centre-Pasteur Institute of IranAmolIran

Personalised recommendations