Advertisement

A method for gamma background subtraction using Visual Basic for Applications code with Microsoft Excel

  • J. A. Suarez-NavarroEmail author
  • Ll. Pujol
  • M. J. Suarez-Navarro
  • M. Arana
  • G. Hernáiz
Article
  • 26 Downloads

Abstract

This work proposes a method for gamma background subtraction by combining several background spectra acquired during short-term measurements (100,000 s). A dedicated Visual Basic code has been developed, that performs an energy correction due to gain drifts, via interpolation of the counts, and finally a summation of several background spectra. Three interpolations were tested: linear, quadratic and cubic, from which the linear was selected after checking the Gaussian fit and accuracy of the areas of the resulting photopeaks. The activity concentration results using the proposed algorithm in two intercomparable exercises and different matrices showed the reproducibility of the proposed method.

Keywords

Gamma spectrometry Background fluctuation Genie-2000 Microsoft Excel HPGe detector 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10967_2018_6411_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 80 kb)

References

  1. 1.
    Dragounová L, Rulík P (2013) Low level activity determination by means of gamma spectrometry with respect to the natural background fluctuation. Appl Radiat Isot 81:123–127CrossRefGoogle Scholar
  2. 2.
    Banjanac R, Dragic A, Udovicic V, Jokovic D, Maletic D, Veselinovic N, Savic M (2014) Variations of gamma-ray background in the Belgrade shallow underground low-level laboratory. Appl Radiat Isot 87:70–72CrossRefGoogle Scholar
  3. 3.
    Wasim M, Arif M, Zaidi J (2010) Statistical data analysis of gamma-ray background spectra for quality assurance purposes. Nucleus 47(1):55–60Google Scholar
  4. 4.
    Bucar K, Korun M, Vodenik B (2012) Influence of the thorium decay series on the background of high-resolution gamma-ray spectrometers. Appl Radiat Isot 70(6):1005–1009CrossRefGoogle Scholar
  5. 5.
    Pratt T, Luther M (1971) A study of germanium-lithium drifted gamma spectrum shapes. Nucl Instrum Methods 92(3):317–323CrossRefGoogle Scholar
  6. 6.
    Schroettner T, Kindl P (2010) Long term comparison of methods to sustain energy calibration in low level gamma-ray spectroscopy and investigation of possible sources for drift. Appl Radiat Isot 68(1):164–168.  https://doi.org/10.1016/j.apradiso.2009.08.018 CrossRefGoogle Scholar
  7. 7.
    Hurtado S, García-León M, García-Tenorio R (2006) A revision of energy and resolution calibration method of Ge detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 564(1):295–299CrossRefGoogle Scholar
  8. 8.
    Hertogen J, De Donder J, Gijbels R (1974) Experimental data on photopeak integration methods in activation analysis. Nucl Instrum Methods 115(1):197–212CrossRefGoogle Scholar
  9. 9.
    Bossew P (2005) A very long-term HPGe-background gamma spectrum. Appl Radiat Isot 62(4):635–644CrossRefGoogle Scholar
  10. 10.
    Covell D (1959) Determination of gamma-ray abundance directly from total absorption peak. Anal Chem 31(11):1785–1790CrossRefGoogle Scholar
  11. 11.
    Routti JT, Prussin SG (1969) Photopeak method for the computer analysis of gamma-ray spectra from semiconductor detectors. Nucl Instrum Methods 72(2):125–142CrossRefGoogle Scholar
  12. 12.
    Kokta L (1973) Determination of peak area. Nucl Instrum Methods 112(1):245–251.  https://doi.org/10.1016/0029-554X(73)90803-3 CrossRefGoogle Scholar
  13. 13.
    Helmer R, Heath R, Putnam M, Gipson D (1967) Photopeak analysis program for photon energy and intensity determinations: Ge (Li) and NaI (Tl) spectrometers. Nucl Instrum Methods 57:46–57CrossRefGoogle Scholar
  14. 14.
    Westmeier W (1981) Background subtraction in Ge (Li) gamma-ray spectra. Nucl Instrum Methods 180(1):205–210CrossRefGoogle Scholar
  15. 15.
    Quittner P (1969) Precise peak area determination for Ge (Li) detectors. Anal Chem 41(11):1504–1506CrossRefGoogle Scholar
  16. 16.
    Quittner P (1969) Peak area determination for Ge (Li) detector data. Nucl Instrum Methods 76(1):115–124CrossRefGoogle Scholar
  17. 17.
    CANBERRA (2002) Programing library user’s manual of model S560 GenieTM 2000. Canberra Industries, Inc., MeritenGoogle Scholar
  18. 18.
    Suárez-Navarro JA, Gascó C, Alonso MM, Blanco-Varela MT, Lanzon M, Puertas F (2018) Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl Radiat Isot 142:1–7.  https://doi.org/10.1016/j.apradiso.2018.09.019 CrossRefGoogle Scholar
  19. 19.
    Mariscotti MA (1967) A method for automatic identification of peaks in presence of background and its application to spectrum analysis. Nucl Instrum Methods 50(2):309–320.  https://doi.org/10.1016/0029-554x(67)90058-4 CrossRefGoogle Scholar
  20. 20.
    CANBERRA (2009) Interactive peak fit user’s manual. Model S506. Canberra Industries, MeritenGoogle Scholar
  21. 21.
    ISO (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. International organization for standardization, GenevaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT – Dpto. Medio Ambiente)MadridSpain
  2. 2.Centro de Estudios y Experimentación de Obras Públicas (CEDEX)MadridSpain
  3. 3.Departamento de Hidráulica, Energía y MedioambienteUniversidad Politécnica de Madrid, ETSI CaminosMadridSpain

Personalised recommendations