Journal of Radioanalytical and Nuclear Chemistry

, Volume 319, Issue 3, pp 1037–1043 | Cite as

Variation rules of the radon emanation coefficient in dump-leached uranium tailing sand

  • Chun-hua Huang
  • Shi Li
  • Yong-jun YeEmail author
  • De-xin Ding
  • Wen-hao Wu


This study was intended to determine the variation rules of the radon emanation coefficient in dump-leached uranium tailing sand. A temperature and humidity controllable device for measuring the emanation coefficient was designed. Tailing sand with different grain sizes was selected from uranium tailings in southern China. An orthogonal experimental design was conducted to determine the radon emanation coefficient of the sand under different temperatures, humidities and grain sizes. Experimental results showed that the air temperature, humidity and grain size have significant effects on the emanation coefficient. The variation rules regarding the radon emanation coefficient showed significant reference value.


Radon Emanation coefficient Variation rule Dump-leached uranium tailing sand 



This work was supported by National Natural Science Foundation of China (11575080), Hunan Provincial Natural Science Foundation of China (2018JJ2318), the 2017 Graduate Research and Innovation Project Fund (2017YCXXM02) and the 2018 Graduate Research and Innovation Project Fund (2018KYY141).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Tomášek L (1993) Radon exposure and cancers other than lung cancer among uranium miners in West Bohemia. Lancet 341(8805):919–923CrossRefGoogle Scholar
  2. 2.
    Tomášek L, Darby SC, Fearn T (1994) Patterns of lung cancer mortality among uranium miners in West Bohemia with varying rates of exposure to radon and its progeny. Radiat Res 137(2):251–261CrossRefGoogle Scholar
  3. 3.
    Lubin JH, Boice J Jr, Edling C, Hornung RW, Howe GR, Kunz E et al (1995) Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst 11(11):817CrossRefGoogle Scholar
  4. 4.
    Darby S, Hill D, Auvinen A, Barrosdios JM, Baysson H, Bochicchio F et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 european case-control studies. BMJ 330(7485):223–226CrossRefGoogle Scholar
  5. 5.
    Killip IR (2005) Radon hazard and risk in sussex, england and the factors affecting radon levels in dwellings in chalk terrain. Radiat Prot Dosim 113(1):99–107CrossRefGoogle Scholar
  6. 6.
    Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW et al (2005) Residential radon and risk of lung cancer: a combined analysis of 7 north american case-control studies. Epidemiology 16(2):137–145CrossRefGoogle Scholar
  7. 7.
    Yu KN, Lau BMF, Nikezic D (2006) Assessment of environmental radon hazard using human respiratory tract models. J Hazard Mater 132(1):98–110CrossRefGoogle Scholar
  8. 8.
    Denman AR, Rogers S, Ali A, Sinclair J, Phillips PS, Crockett RG et al (2015) Small area mapping of domestic radon, smoking prevalence and lung cancer incidence–a case study in northamptonshire, uk. J Environ Radioact 150:159–169CrossRefGoogle Scholar
  9. 9.
    Pavia M, Bianco A, Pileggi C, Angelillo IF (2003) Meta-analysis of residential exposure to radon gas and lung cancer. Bull World Health Organ 81(10):732–738Google Scholar
  10. 10.
    NEA, IAEA (2010) Uranium 2009: resources, production and demand. OECD Publishing, ParisGoogle Scholar
  11. 11.
    Jobbágy V, Somlai J, Kovács J et al (2009) Dependence of radon emanation of red mud bauxite processing wastes on heat treatment. J Hazard Mater 172(2–3):1258–1263CrossRefGoogle Scholar
  12. 12.
    Kovács T, Shahrokhi A, Sas Z, Vigh T, Somlai J (2016) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:1–6Google Scholar
  13. 13.
    Sakoda A, Ishimori Y, Hanamoto K, Kataoka T, Kawabe A, Yamaoka K (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45(2):204–210CrossRefGoogle Scholar
  14. 14.
    Strong KP, Levins DM (1982) Effect of moisture content on radon emanation from uranium ore and tailings. Health Phys 42(1):27–32CrossRefGoogle Scholar
  15. 15.
    Barton TP, Ziemer PL (1986) The effects of particle size and moisture content on the emanation of rn from coal ash. Health Phys 50(5):581CrossRefGoogle Scholar
  16. 16.
    Markkanen M, Arvela H (1992) Radon emanation from soils. Zhejiang Soc Sci 82(4 Pt 1):2011–2024Google Scholar
  17. 17.
    Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59(5–6):389CrossRefGoogle Scholar
  18. 18.
    Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions - a pilot study on granitic esker sand sample. J Environ Radioact 101(11):1002–1006CrossRefGoogle Scholar
  19. 19.
    Myers S (1999) Predicting arsenic concentrations in the porewaters of buried uranium mill tailings. Geochim Cosmochim Acta 63(19–20):3379–3394Google Scholar
  20. 20.
    Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated mary kathleen uranium mine, australia. J Geochem Explor 85(3):119–137CrossRefGoogle Scholar
  21. 21.
    Martin AJ, Crusius J, Mcnee JJ, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18(7):1095–1110CrossRefGoogle Scholar
  22. 22.
    Bassot S, Benitah DSS (2005) Radium behaviour during ferric oxi-hydroxides ageing. Radioprotection 40(Suppl 1):S277–S283CrossRefGoogle Scholar
  23. 23.
    Semkow TM, Parekh PP (2013) The role of radium distribution and porosity in radon emanation from solids. Geophys Res Lett 17(6):837–840CrossRefGoogle Scholar
  24. 24.
    Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M (2013) Measurement and calculation of radon releases from NORM residues, Technical reports series No.474. International atomic energy agency. ViennaGoogle Scholar
  25. 25.
    Nan H, Ding D, Li G (2014) Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129(129):100–106Google Scholar
  26. 26.
    Sui DS, Cui ZS (2009) Application of orthogonal experimental design and Tikhonov regularization method for the identification of parameters in the casting solidification process. Acta Metall Sin (English Letters) 22(1):13–21CrossRefGoogle Scholar
  27. 27.
    Ye YJ, Wang LH, Ding DX, Zhao YL, Fan NB (2014) Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore. Radiat Meas 68:1–6CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Chun-hua Huang
    • 1
  • Shi Li
    • 2
  • Yong-jun Ye
    • 2
    • 3
    Email author
  • De-xin Ding
    • 2
    • 3
  • Wen-hao Wu
    • 2
  1. 1.School of ArchitectureUniversity of South ChinaHengyangChina
  2. 2.School of Environmental and Safety EngineeringUniversity of South ChinaHengyangChina
  3. 3.Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangChina

Personalised recommendations