Advertisement

Surface functionalized diatomaceous earth for effective adsorption of strontium from aqueous solution

  • Rahulgandhi Dhanapal
  • Reshma Ravindran
  • N. Seethalakshmi
  • R. SelvakumarEmail author
Article
  • 29 Downloads

Abstract

In the present study, the diatomaceous earth (DE) was used as a sorbent for strontium (Sr) removal from aqueous solution. DE was surface functionalized using silane [tetraethoxysilane (TEOS), dimethyldiethoxy silane (DMODMS)], ionic liquid impregnation [trihexyltetradecyl phosphonium chloride (Cyphos IL-101)] and manganese chloride (MnCl2). Among the functionalized DE, DMODMS functionalized DE showed the highest Sr removal (90%). The variation in Sr removal using different adsorbents are in the order of DMODMS > TEOS > MnCl2 > control DE > Cyphos 101. The results indicate that silane modified DE is having a higher capacity to remove Sr when compared to all other modifications and can be used to adsorb Sr from contaminated water.

Keywords

Diatomaceous earth Surface modification Characterization Strontium Adsorption 

Notes

Funding

Funding was provided by Department of Science and Technology, Ministry of Science and Technology (DST/TM/WTI/2K16/113(G)).

References

  1. 1.
    Llobet JM, Falcó G, Casas C et al (2003) Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J Agric Food Chem 51:838–842.  https://doi.org/10.1021/jf020734q CrossRefGoogle Scholar
  2. 2.
    Bhalla A, Singh G, Kumar S et al (2011) Elemental analysis of groundwater from different regions of Punjab state (India) using EDXRF technique and the sources of water contamination. Proc Int Conf Environ Comput Sci 19:156–164Google Scholar
  3. 3.
    Usuda K, Kono K, Dote T et al (2006) Survey of strontium in mineral waters sold in Japan. Biol Trace Elem Res 112:77–86CrossRefGoogle Scholar
  4. 4.
    Höllriegl V, München HZ (2011) Strontium in the environment and possible human health effects. Elsevier, Burlington, pp 268–275Google Scholar
  5. 5.
    Yusan S, Erenturk S (2011) Adsorption characterization of strontium on PAN/Zeolite composite adsorbent. World J Nucl Sci Technol 01:6–12.  https://doi.org/10.4236/wjnst.2011.11002 CrossRefGoogle Scholar
  6. 6.
    Negrea A, Lupa L, Ciopec M, Negrea P (2013) Characterization of strontium adsorption from aqueous solutions using inorganic materials impregnated with ionic liquid. Int J Chem Eng Appl 4:326–331.  https://doi.org/10.7763/IJCEA.2013.V4.319 Google Scholar
  7. 7.
    Sato I, Kudo H, Tsuda S (2011) Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water. J Toxicol Sci 36:829–834.  https://doi.org/10.2131/jts.36.829 CrossRefGoogle Scholar
  8. 8.
    Rao MM, Rao GPC, Seshaiah K et al (2008) Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Manag 28:849–858.  https://doi.org/10.1016/j.wasman.2007.01.017 CrossRefGoogle Scholar
  9. 9.
    Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318.  https://doi.org/10.1016/j.desal.2008.01.018 CrossRefGoogle Scholar
  10. 10.
    Pillai SC, Hehir S (2017) Sol-gel materials for energy, environment and electronic applications. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Yavari R, Huang Y, Mostofizadeh A (2010) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285:703–710CrossRefGoogle Scholar
  12. 12.
    Başçetin E, Atun G (2006) Adsorptive removal of strontium by binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64:957–964.  https://doi.org/10.1021/je9004678 CrossRefGoogle Scholar
  13. 13.
    Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704.  https://doi.org/10.1016/j.watres.2004.06.008 CrossRefGoogle Scholar
  14. 14.
    Bronić J, Subotić B (1992) Removal of strontium ions from solutions using granulated zeolites. J Radioanal Nucl Chem 162:339–350.  https://doi.org/10.1007/BF02035394 CrossRefGoogle Scholar
  15. 15.
    Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190:916–921.  https://doi.org/10.1016/j.jhazmat.2011.04.006 CrossRefGoogle Scholar
  16. 16.
    Zhang J, Ding T, Zhang Z et al (2015) Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells. PLoS ONE 10:1–18.  https://doi.org/10.1371/journal.pone.0123395 Google Scholar
  17. 17.
    Marešová J, Pipíška M, Rozložník M et al (2011) Cobalt and strontium sorption by moss biosorbent: modeling of single and binary metal systems. Desalination 266:134–141.  https://doi.org/10.1016/j.desal.2010.08.014 CrossRefGoogle Scholar
  18. 18.
    Mao YL, Wang XT, Luo ST, Liu WF (2011) Adsorptive removal of strontium from aqueous solution by utilizing Pseudomonas alcaligenes biomass as biosorbent. In: Proceedings of 3rd international conference measuring technology and mechatronics automation ICMTMA 2011, vol 1, pp 351–354.  https://doi.org/10.1109/icmtma.2011.89
  19. 19.
    Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-bamboo charcoal. J Hazard Mater 177:300–306.  https://doi.org/10.1016/j.jhazmat.2009.12.032 CrossRefGoogle Scholar
  20. 20.
    Yu Y, Addai-Mensah J, Losic D (2012) Functionalized diatom silica microparticles for removal of mercury ions. Sci Technol Adv Mater 13:015008.  https://doi.org/10.1088/1468-6996/13/1/015008 CrossRefGoogle Scholar
  21. 21.
    Thakkar M, Randhawa V, Mitra S, Wei L (2015) Synthesis of diatom-FeOx composite for removing trace arsenic to meet drinking water standards. J Colloid Interface Sci 457:169–173.  https://doi.org/10.1016/j.jcis.2015.07.003 CrossRefGoogle Scholar
  22. 22.
    Sbihi K, Cherifi O, Bertrand M (2012) Toxicity and biosorption of chromium from aqueous solutions by the diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot. Am J Sci Ind Res 3:27–38.  https://doi.org/10.5251/ajsir.2012.3.1.27.38 Google Scholar
  23. 23.
    Bonaccorsi L, Bruzzaniti P, Calabrese L, Proverbio E (2016) Organosilanes functionalization of alumino-silica zeolites for water adsorption applications. Microporous Mesoporous Mater 234:113–119.  https://doi.org/10.1016/j.micromeso.2016.07.019 CrossRefGoogle Scholar
  24. 24.
    Khraisheh MAM, Al-degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:177–184.  https://doi.org/10.1016/j.cej.2003.11.029 CrossRefGoogle Scholar
  25. 25.
    Ramakrishnan P, Nagarajan S, Thiruvenkatam V et al (2016) Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: a comparative study with and without calcination. Appl Clay Sci 134:136–144.  https://doi.org/10.1016/j.clay.2016.09.022 CrossRefGoogle Scholar
  26. 26.
    Zhang H, Wu A, Fu H et al (2017) Efficient removal of Pb(II) ions using manganese oxides: the role of crystal structure. RSC Adv 7:41228–41240.  https://doi.org/10.1039/C7RA05955H CrossRefGoogle Scholar
  27. 27.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72.  https://doi.org/10.1021/cr00099a003 CrossRefGoogle Scholar
  28. 28.
    Liu Y, Zhu L, Sun X et al (2009) Silica materials doped with bifunctional ionic liquid extractant for yttrium extraction. Ind Eng Chem Res 48:7308–7313.  https://doi.org/10.1021/ie900468c CrossRefGoogle Scholar
  29. 29.
    Junaidi MUM, Khoo CP, Leo CP, Ahmad AL (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous Mesoporous Mater 192:52–59.  https://doi.org/10.1016/j.micromeso.2013.10.006 CrossRefGoogle Scholar
  30. 30.
    Fowler CE, Buchber C, Lebeau B et al (2007) An aqueous route to organically functionalized silica diatom skeletons. Appl Surf Sci 253:5485–5493.  https://doi.org/10.1016/j.apsusc.2006.12.093 CrossRefGoogle Scholar
  31. 31.
    Cicco S, Vona D, Gristina R et al (2016) Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells. Bioengineering 3:35.  https://doi.org/10.3390/bioengineering3040035 CrossRefGoogle Scholar
  32. 32.
    Tsai WT, Lai CW, Hsien KJ (2006) Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. J Colloid Interface Sci 297:749–754.  https://doi.org/10.1016/j.jcis.2005.10.058 CrossRefGoogle Scholar
  33. 33.
    Lewin JC (1961) The dissolution of silica from diatom walls. Geochimica et Cosmochimica Acta 21:182–198CrossRefGoogle Scholar
  34. 34.
    Chetia L, Kalita D, Ahmed GA (2017) Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens Bio Sens Res.  https://doi.org/10.1016/j.sbsr.2017.11.004 Google Scholar
  35. 35.
    Özeroglu C, Keçeli G (2006) Removal of strontium ions by a crosslinked copolymer containing methacrylic acid functional groups. J Radioanal Nucl Chem 268:211–219.  https://doi.org/10.1524/ract.2007.95.8.459 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyPSG College of TechnologyPeelamedu, CoimbatoreIndia
  2. 2.Nanobiotechnology LaboratoryPSG Institute of Advanced StudiesPeelamedu, CoimbatoreIndia

Personalised recommendations