Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 427–438 | Cite as

Interfacial insights on the dibenzo-based crown ether assisted cesium extraction in [BMIM][Tf2N]–water binary system

  • Rima Biswas
  • Viswanath Pasumarthi
  • Tamal BanerjeeEmail author
  • Pallab Ghosh
  • Sk. Musharaf Ali
  • Jayant M. Joshi
Article

Abstract

The distribution coefficient of Cs is estimated using dibenzo-21-crown-7 (DB21C7) and di-benzo-18-crown-6 (DB18C6) in 1-butyl-3-methylimidazolium bis (trifluroromethanesulphonyl) imide (BMIMTF2N) ionic liquid by performing solvent extraction experiments. In addition, molecular dynamics studies on the extraction of cesium (Cs+) ion transfer from the aqueous phase to the BMIMTF2N phase is reported. The experimental findings gave a cesium distribution coefficient of 0.218 and 0.326, which agrees closely with the values of 0.2 and 0.5 obtained from MD simulation for the ionophores DB18C6 and DB21C7, respectively. Thus MD simulation may be helpful in screening the solvents prior to the experiments.

Keywords

Liquid–liquid extraction Crown ethers Cesium Ionic liquid Distribution coefficients MD simulation 

Notes

Acknowledgments

This work was funded by the Board of Research in Nuclear Sciences (BRNS, Government of India) vide scheme no. 2013/36/30-BRNS/2352, dated: 26 November 2013.

Supplementary material

Supplementary material 1 (MP4 8631 kb)

References

  1. 1.
    Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741CrossRefGoogle Scholar
  2. 2.
    Cocalia VA, Jensen MP, Holbrey JD, Spear SK, Stepinski DC, Rogers RD (2005) Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans 11:1966–1971CrossRefGoogle Scholar
  3. 3.
    Dai S, Ju YH, Barnes CE (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids [dagger]. Dalton Trans 8:1201–1202CrossRefGoogle Scholar
  4. 4.
    Luo H, Dai S, Bonnesen PV, Buchanan AC, Holbrey JD, Bridges NJ, Rogers RD (2004) Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids. Anal Chem 76:3078–3083CrossRefGoogle Scholar
  5. 5.
    Visser AE, Jensen MP, Laszak I, Nash KL, Choppin GR, Rogers RD (2003) Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg Chem 42:2197–2199CrossRefGoogle Scholar
  6. 6.
    Visser AE, Swatloski RP, Reichert WM, Griffin ST, Rogers RD (2000) Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind Eng Chem Res 39:3596–3604CrossRefGoogle Scholar
  7. 7.
    Nakashima K, Kubota F, Maruyama T, Goto M (2005) Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind Eng Chem Res 44:4368–4372CrossRefGoogle Scholar
  8. 8.
    Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  9. 9.
    Gutsche CD, Dhawan B, No KH, Muthukrishnan R (1981) Calixarenes 4 the synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc 103:3782–3792CrossRefGoogle Scholar
  10. 10.
    Xu C, Yuan L, Shen X, Zhai M (2010) Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect. Dalton Trans 39:3897–3902CrossRefGoogle Scholar
  11. 11.
    Levitskaia TG, Macdonald DM, Lamb JD, Moyer BA (2000) Prediction of the carrier-mediated cation flux through polymer inclusion membranes via fundamental thermodynamic quantities: complexation study of bis(dodecyloxy)calix[4]arene-crown-6 with alkali metal cations. Phys Chem Chem Phys 2:1481–1491CrossRefGoogle Scholar
  12. 12.
    Huddleston J, Rogers R (1998) Room temperature ionic liquids as novel media for ‘clean’liquid–liquid extraction. Chem Commun 16:1765–1766CrossRefGoogle Scholar
  13. 13.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  14. 14.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164CrossRefGoogle Scholar
  15. 15.
    Leeuw SWD, Perram JW, Smith ER (1983) Simulation of electrostatic systems in periodic boundary conditions. III. Further theory and applications. Proc R Soc Lond A 388:177–193CrossRefGoogle Scholar
  16. 16.
    Sieffert N, Wipff G (2006) Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces. J Phys Chem B 110:19497–19506CrossRefGoogle Scholar
  17. 17.
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164CrossRefGoogle Scholar
  18. 18.
    Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312CrossRefGoogle Scholar
  19. 19.
    Canongia Lopes JN, Pádua AA (2006) Molecular force field for ionic liquids III: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J Phys Chem B 110:19586–19592CrossRefGoogle Scholar
  20. 20.
    Canongia Lopes JN, Deschamps J, Pádua AA (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:2038–2047CrossRefGoogle Scholar
  21. 21.
    Canongia Lopes JN, Pádua AA (2004) Molecular force field for ionic liquids composed of triflate or bistriflimide anions. J Phys Chem B 108:16893–16898CrossRefGoogle Scholar
  22. 22.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  23. 23.
    Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041CrossRefGoogle Scholar
  24. 24.
    Sahu P, Ali SM, Singh JK (2014) Structural and dynamical properties of Li+-dibenzo-18-crown-6 (DB18C6) complex in pure solvents and at the aqueous-organic interface. J Mol Model 20:1–12CrossRefGoogle Scholar
  25. 25.
    Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252CrossRefGoogle Scholar
  26. 26.
    Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide. J Chem Eng Data 57:1072–1077CrossRefGoogle Scholar
  27. 27.
    Sieffert N, Wipff G (2006) The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid–liquid interface. J Phys Chem B 110:13076–13085CrossRefGoogle Scholar
  28. 28.
    Ali SM, Joshi J, Deb AS, Boda A, Shenoy K, Ghosh S (2014) Dual mode of extraction for Cs+ and Na+ ions with dicyclohexano-18-crown-6 and bis (2-propyloxy) calix [4] crown-6 in ionic liquids: density functional theoretical investigation. RSC Adv 4:22911–22925CrossRefGoogle Scholar
  29. 29.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Rima Biswas
    • 1
  • Viswanath Pasumarthi
    • 1
  • Tamal Banerjee
    • 1
    Email author
  • Pallab Ghosh
    • 1
  • Sk. Musharaf Ali
    • 2
  • Jayant M. Joshi
    • 2
  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Chemical Engineering DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations