Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver

  • 16 Accesses

Abstract

In this research, we presented the synthesis of cross-linking poly N-vinyl pyrrolidone /acrylic acid hydrogel and nanoclay hydrogel based on gelatin which named gelatin-g-NVP-AA, gelatin-g-NVP-AA/MMT and used them as cephalexin drug delivery. These hydrogels were fully characterized by FTIR, SEM, TEM, XRD, TGA, DSC, Also, the effect of difference saline solution, temperature, the percentage of nanoclay and time were investigated. In addition, because of pH sensitivity of hydrogels, the swelling, drug loading and drug releasing were studied in different pHs, distilled water and buffers to determine the best condition for each situation which resulted illustrated the universal buffer in pH 8 was the least interaction with hydrogels and had maximum drug loading and releasing in this condition. Antibacterial activities of hydrogels were examined against the S. aureus and the E. coli and showed an interesting result for the loaded drug on gelatin-g-NVP-AA/MMT.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Sultana F, Imran-Ul-Haque M, Arafat M, Sharmin S (2013) An overview of Nanogel drug delivery system. J appl pharm sci 3(9):95–103. https://doi.org/10.7324/JAPS.2013.38.S15

  2. 2.

    Jin S, Liu M, Zhang F, Chen S, Niu A (2006) Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly (N-vinylpyrrolidone) and poly (acrylic acid). Polymer 47(5):1526–1532

  3. 3.

    Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch—poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23(4):381–404

  4. 4.

    Kuo C-Y, Don T-M, Lin Y-T, Hsu S-C, Chiu W-Y (2019) Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing. J Polym Res 26(1):18

  5. 5.

    Gonçalves C, Pereira P, Gama M (2010) Self-assembled hydrogel nanoparticles for drug delivery applications. Materials 3(2):1420–1460

  6. 6.

    Bhuiyan M, Rahman M, Rahaman M, Shajahan M, Dafader N (2015) Improvement of swelling behaviour of poly (vinyl Pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Organic Chem Curr Res 4(138):2161–0401.10001

  7. 7.

    Dafader N, Adnan M, Haque M, Huq D, Akhtar F (2011) Study on the properties of copolymer hydrogel obtained from acrylamide/2-hydroxyethyl methacrylate by the application of gamma radiation. Afr J P Appl Chem 5(5):111–118

  8. 8.

    Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137

  9. 9.

    Sohail K, Khan IU, Shahzad Y, Hussain T, Ranjha NM (2014) pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: impact of material parameters on swelling and drug release. Braz J Pharm Sci 50(1):173–184

  10. 10.

    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

  11. 11.

    Jin S, Gu J, Shi Y, Shao K, Yu X, Yue G (2013) Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J 49(7):1871–1880

  12. 12.

    Richter A, Kuckling D, Howitz S, Gehring T, Arndt K-F (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753

  13. 13.

    Bashir R, Hilt J, Elibol O, Gupta A, Peppas N (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81(16):3091–3093

  14. 14.

    Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-JP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

  15. 15.

    Schuvailo O, Soldatkin O, Lefebvre A, Cespuglio R, Soldatkin A (2006) Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Anal Chim Acta 573:110–116

  16. 16.

    Lu Q, Yu J, Gao J, Yang W, Li Y (2011) Glow-discharge electrolysis plasma induced synthesis of Polyvinylpyrrolidone/acrylic acid hydrogel and its adsorption properties for heavy-metal ions. Plasma Process Polym 8(9):803–814

  17. 17.

    Yuan Q, Su C, Cao Y, Wu K, Xu J, Yang S (2014) Rhodamine loading and releasing behavior of hydrogen-bonded poly (vinylpyrrolidone)/poly (acrylic acid) film. Colloids Surf A Physicochem Eng Asp 456:153–159

  18. 18.

    Sadeghi M (2012) Synthesis of a biocopolymer carrageenan-g-poly (AAm-co-IA)/montmorilonite superabsorbent hydrogel composite. Braz J Chem Eng 29(2):295–305

  19. 19.

    Entezami AA, Massoumi B (2006) Artificial muscles, biosensors and drug delivery systems based on conducting polymers: a review. Iranian Polym J 15(1):13–30

  20. 20.

    Eroglu B, Dalgakiran D, Inan T, Kurkcuoglu O, Güner FS (2018) A computational and experimental approach to develop minocycline-imprinted hydrogels and determination of their drug delivery performances. J Polym Res 25(12):258

  21. 21.

    Razzak MT, Darwis D (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62(1):107–113

  22. 22.

    Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68(1):23–30

  23. 23.

    Marsano E, Bianchi E, Vicini S, Compagnino L, Sionkowska A, Skopińska J, Wiśniewski M (2005) Stimuli responsive gels based on interpenetrating network of chitosan and poly (vinylpyrrolidone). Polymer 46(5):1595–1600

  24. 24.

    Pawar RP, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly (lactic acid). Recent Pat Regen Med 4(1):40–51

  25. 25.

    Lubasova D, Niu H, Zhao X, Lin T (2015) Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly (acrylic acid) blend nanofibers. RSC Adv 5(67):54481–54487

  26. 26.

    Kadłubowski S, Henke A, Ulański P, Rosiak JM (2010) Hydrogels of polyvinylpyrrolidone (PVP) and poly (acrylic acid)(PAA) synthesized by radiation-induced crosslinking of homopolymers. Radiat Phys Chem 79(3):261–266

  27. 27.

    Kadłubowski S, Henke A, Ulański P, Rosiak JM, Bromberg L, Hatton TA (2007) Hydrogels of polyvinylpyrrolidone (PVP) and poly (acrylic acid)(PAA) synthesized by photoinduced crosslinking of homopolymers. Polymer 48(17):4974–4981

  28. 28.

    Ishiduki K, Esumi K (1997) The effect of pH on adsorption of poly (acrylic acid) and poly (vinylpyrrolidone) on alumina from their binary mixtures. Langmuir 13(6):1587–1591

  29. 29.

    Jovašević J, Dimitrijević S, Filipović J, Tomić S, Micić M, Suljovrujić E (2011) Swelling, mechanical and antimicrobial studies of Ag/P (HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys Polon 120(2)

  30. 30.

    Bajpai S, Dubey S (2005) In vitro dissolution studies for release of vitamin B12 from poly (N-vinyl-2-pyrrolidone-co-acrylic acid) hydrogels. React Funct Polym 62(1):93–104

  31. 31.

    Gallardo A, Eguiburu JL, Berridi MJF, San Román J (1998) Preparation and in vitro release studies of ibuprofen-loaded films and microspheres made from graft copolymers of poly (L-lactic acid) on acrylic backbones. J Control Release 55(2–3):171–179

  32. 32.

    Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhanitabar A (2017) A promising porous polymer-nanoclay hydrogel nanocomposite as water reservoir material: synthesis and kinetic study. J Porous Mater:1–11

  33. 33.

    Marandi GB, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly (sodium acrylate-co-acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18(6):1487–1499

  34. 34.

    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11

  35. 35.

    Azmi S, Razak SIA, Abdul Kadir MR, Iqbal N, Hassan R, Nayan NHM, Abdul Wahab AH, Shaharuddin S (2017) Reinforcement of poly (vinyl alcohol) hydrogel with halloysite nanotubes as potential biomedical materials. Soft Mater 15(1):45–54

  36. 36.

    Noori S, Kokabi M, Hassan Z (2015) Nanoclay enhanced the mechanical properties of poly (vinyl alcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Procedia Mater Sci 11:152–156

  37. 37.

    Song L, Zhu M, Chen Y, Haraguchi K (2008) Temperature-and pH-sensitive Nanocomposite gels with semi-interpenetrating organic/inorganic networks. Macromol Chem Phys 209(15):1564–1575

  38. 38.

    Abdurrahmanoglu S, Can V, Okay O (2008) Equilibrium swelling behavior and elastic properties of polymer–clay nanocomposite hydrogels. J Appl Polym Sci 109(6):3714–3724

  39. 39.

    Huang X, Xu S, Zhong M, Wang J, Feng S, Shi R (2009) Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels. Appl Clay Sci 42(3–4):455–459

  40. 40.

    Zhang Y-T, Zhi T-T, Zhang L, Huang H, Chen H-L (2009) Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer 50(24):5693–5700

  41. 41.

    Sirousazar M, Kokabi M, Hassan Z, Bahramian A (2011) Dehydration kinetics of polyvinyl alcohol nanocomposite hydrogels containing Na-montmorillonite nanoclay. Sci Iran 18(3):780–784

  42. 42.

    Kaşgöz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19(7):838–845

  43. 43.

    Mahdavinia GR, Hasanpour J, Rahmani Z, Karami S, Etemadi H (2013) Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 20(5):2591–2604

  44. 44.

    Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

  45. 45.

    Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly (vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033

  46. 46.

    Song F, Zhang L-M, Shi J-F, Li N-N (2010) Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles. Colloids Surf B 81(2):486–491

  47. 47.

    Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105(5):2631–2639

  48. 48.

    Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98(1):358–365

  49. 49.

    Siemianowski LA, Rosenheck JP, Whitman CB (2014) Nalbuphine-induced psychosis treated with naloxone. Am J Health Syst Pharm 71(9):717–721. https://doi.org/10.2146/ajhp130485

  50. 50.

    Chouhan R, Bajpai AK (2010) Release dynamics of ciprofloxacin from swellable nanocarriers of poly(2-hydroxyethyl methacrylate): an in vitro study. Nanomed Nanotech Bio Med 6(3):453–462. https://doi.org/10.1016/j.nano.2009.11.006

  51. 51.

    Mostafavi A, Emami J, Varshosaz J, Davies NM, Rezazadeh M (2011) Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: pharmacokinetic characterization in healthy human volunteers. Int J Pharm 409(1):128–136. https://doi.org/10.1016/j.ijpharm.2011.02.035

  52. 52.

    Singh B, Sharma V (2017) Crosslinking of poly (vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydr Polym 157:185–195

  53. 53.

    Jarrahpour A, Doroodmand MM, Ebrahimi E (2012) The first report of [2+ 2] ketene–imine cycloaddition reactions (Staudinger) on carbon nanotubes. Tetrahedron Lett 53(23):2797–2801

  54. 54.

    Esmaeilpour M, Sardarian AR, Jarrahpour A, Ebrahimi E, Javidi J (2016) Synthesis and characterization of β-lactam functionalized superparamagnetic Fe 3 O 4@ SiO 2 nanoparticles as an approach for improvement of antibacterial activity of β-lactams. RSC Adv 6(49):43376–43387

  55. 55.

    Turos E, Reddy GSK, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, Dickey S, Lim DV (2007) Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett 17(12):3468–3472

  56. 56.

    Ebrahimi E, Jarrahpour A, Heidari N, Sinou V, Latour C, Brunel JM, Zolghadr AR, Turos E (2016) Synthesis and antimalarial activity of new nanocopolymer β-lactams and molecular docking study of their monomers. Med Chem Res 25(2):247–262

  57. 57.

    Bardajee GR, Pourjavadi A, Ghavami S, Soleyman R, Jafarpour F (2011) UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon. J Photochem Photobiol B 102(3):232–240

  58. 58.

    Britton HTS, Robinson RA (1931) CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. J Chem Soc:1456–1462

  59. 59.

    Peppas LBH, R.S. (1990) Absorbent Polymer Technology. Elsevier, Amsterdam, The Netherlands

  60. 60.

    Ebrahimi E, Jarrahpour A (2014) Thionyl chloride (or oxalyl chloride) as an efficient acid activator for one-pot synthesis of [Beta]-lactams. Iran J Sci Technol A 38(A1):49

  61. 61.

    Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: a review. Polym Compos 38(6):1086–1102

  62. 62.

    Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

  63. 63.

    Chatterjee A, Ebina T, Onodera Y, Mizukami F (2004) Effect of exchangeable cation on the swelling property of 2: 1 dioctahedral smectite—a periodic first principle study. J Chem Phys 120(7):3414–3424

  64. 64.

    Wang Y, He G, Li Z, Hua J, Wu M, Gong J, Zhang J, Li-tong B, Huang L (2018) Novel biological hydrogel: swelling behaviors study in salt solutions with different ionic valence number. Polymers 10(2):112

  65. 65.

    Buchholz FL, Peppas NA (1994) Superabsorbent polymers: science and technology. ACS Publications

  66. 66.

    Omidian H, Hashemi S, Sammes P, Meldrum I (1999) Modified acrylic-based superabsorbent polymers (dependence on particle size and salinity). Polymer 40(7):1753–1761

  67. 67.

    Zhang J, Yuan K, Wang Y-P, Zhang S-T, Zhang J (2007) Preparation and PH responsive behavior of poly (vinyl alcohol)—chitosan—poly (acrylic acid) full-IPN hydrogels. J Bioact Compat Polym 22(2):207–218

  68. 68.

    Dil NN, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of cu (II) metal ions. J Hazard Mater 351:38–53

Download references

Acknowledgements

The authors extend their appreciation to the Azad University of Arak-Iran for financial support of this work.

Author information

Correspondence to Mohammad Sadeghi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajikarimi, A., Sadeghi, M. Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. J Polym Res 27, 57 (2020). https://doi.org/10.1007/s10965-020-2020-1

Download citation

Keywords

  • Gelatin
  • Nano composites
  • Hydrogels
  • Antibacterial activities
  • Drug loading