Journal of Polymer Research

, 26:280 | Cite as

Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery

  • Chun Hui LuoEmail author
  • Xin Xin Sun
  • Feng Wang
  • Ning Wei
  • Fa Liang LuoEmail author


Environmentally responsive hydrogels are widely used in various applications. Facile synthesis of multiply stimuli-responsive hydrogels is necessary. Herein, a triple pH-, thermo- and ion-sensitive hydrogel, shorted as HSP, was synthesized by aqueous radical polymerization using L-serinyl acrylate as a monomer and PEG180DMA as a crosslinker. The compositions and microstructures of HSP are characterized by FT-IR, 1H NMR and SEM. The swelling ratio of HSP is the lowest at pH = 3.0 while increases sharply far away from this pH value. Meanwhile, HSP expands with elevated temperatures or ionic strengths, and reaches a plateau when they above 60 °C or 3.0 mol/L, respectively. In addition, these swelling processes are reversible under alternative changing in extern stimuli, and these cycles can be repeated at least 5 times. Furthermore, the release of sodium salicylate can be easily mediated by pH values, temperatures and ion concentrations, all above indicating that HSP is a promising material for controlled drug delivery.


Hydrogel Multi-stimuli-responsive L-serinyl acrylate Controlled drug release 



The authors appreciate financial support from Key research projects of North Minzu University(2019KJ14), the National Natural Science Foundation of China (21464001), Specialized Research Fund for Outstanding Young Teachers in Ningxia Higher Education Institutions (NGY2018-165), Natural Science Foundation of Ningxia Province (NZ 17099), Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project, and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K24). The authors declare no competing financial interest.

Supplementary material

10965_2019_1976_MOESM1_ESM.docx (169 kb)
ESM 1 (DOCX 169 kb)


  1. 1.
    Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv. Colloid Interf. Sci. 168(1–2):247–262CrossRefGoogle Scholar
  2. 2.
    Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399(6738):766–769PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ho DK, Nguyen DT, Thambi T, Lee DS, Huynh DP (2018) Polyamide-based pH and temperature-responsive hydrogels: synthesis and physicochemical characterization. J. Polym. Res. 26(1):7–15CrossRefGoogle Scholar
  4. 4.
    Fundueanu G, Constantin M, Bucatariu S, Ascenzi P (2017) pH/thermo-responsive poly( N -isopropylacrylamide- co -maleic acid) hydrogel with a sensor and an actuator for biomedical applications. Polymer 110:177–186CrossRefGoogle Scholar
  5. 5.
    Miladinovic ZR, Micic M, Suljovrujic E (2016) Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. J. Polym. Res. 23(4):77–88CrossRefGoogle Scholar
  6. 6.
    Li LX, Lu B, Zhang Y, Xing XD, Wu XY, Liu ZL (2015) Multi-sensitive copolymer hydrogels of N-isopropylacrylamide with several polymerizable azobenzene-containing monomers. J. Polym. Res. 22(9):176–187CrossRefGoogle Scholar
  7. 7.
    da Silva LBJ, Oréfice RL (2014) Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J. Polym. Res. 21(6):466–474CrossRefGoogle Scholar
  8. 8.
    Tang J, Qiao Y, Chu Y, Tong Z, Zhou Y, Zhang W, Xie S, Hu J, Wang T (2019) Magnetic double-network hydrogels for tissue hyperthermia and drug release. J. Mater. Chem. B 7(8):1311–1321CrossRefGoogle Scholar
  9. 9.
    Kokufata E, Zhang YQ, Tanaka T (1991) Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351(6324):302–304CrossRefGoogle Scholar
  10. 10.
    Yang M, Liu BT, Gao G, Liu XL, Liu FQ (2010) Poly(maleic anhydride-co-acrylic acid)/poly(ethylene glycol) hydrogels with pH- and ionic-strength-responses. Chin. J. Polym. Sci. 28(6):951–959CrossRefGoogle Scholar
  11. 11.
    Stuart MA, Huck WT, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2):101–113PubMedCrossRefGoogle Scholar
  12. 12.
    Elizabeth GK, Julie NLA, Millicent OS, Thomas HE (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 42(17):7057–7071CrossRefGoogle Scholar
  13. 13.
    Li X, Su XL (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J. Mater. Chem. B 6(29):4714–4730CrossRefGoogle Scholar
  14. 14.
    Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS (2008) Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci. 33(2):167–179PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64(3):49–60CrossRefGoogle Scholar
  16. 16.
    Tang JD, Qiao YC, Chu YH, Tong ZF, Zhou Y, Zhang WL, Xie SJ, Hu J, Wang TJ (2019) Magnetic double-network hydrogels for tissue hyperthermia and drug release. J. Mater. Chem. B 7(8):1311–1321CrossRefGoogle Scholar
  17. 17.
    Chen Y, Gao YT, da Silva LP, Pirraco RP, Ma MD, Yang LM, Reis RL, Chen J (2018) A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym. Chem. 9(29):4063–4072CrossRefGoogle Scholar
  18. 18.
    Sun Y, Du XQ, He JL, Hu J, Zhang MZ, Ni PH (2017) Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. J. Mater. Chem. B 5(20):3771–3782CrossRefGoogle Scholar
  19. 19.
    Nutan B, Chandel AKS, Bhalani DV, Jewrajka SK (2017) Synthesis and tailoring the degradation of multi-responsive amphiphilic conetwork gels and hydrogels of poly(beta-amino ester) and poly(amido amine). Polymer 111:265–274CrossRefGoogle Scholar
  20. 20.
    Luo CH (2016) Studies on driving-force of thermo-sensitive behavior for poly(N-methacryloyl-L-β-isopropylasparagine). Acta Polym. Sin. 7:925–930Google Scholar
  21. 21.
    Luo CH, Liu Y, Li ZB (2010) Thermo- and pH-responsive polymer derived from Methacrylamide and aspartic acid. Macromolecules 43(19):8101–8108CrossRefGoogle Scholar
  22. 22.
    Maji T, Banerjee S, Biswas Y, Mandal TK (2015) Dual-stimuli-responsive l-serine-based Zwitterionic UCST-type polymer with tunable Thermosensitivity. Macromolecules 48(14):4957–4966CrossRefGoogle Scholar
  23. 23.
    Luo CH, Fu WX, Li ZB, Zhao B (2016) Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified L-alanine. Polymer 101:319–327CrossRefGoogle Scholar
  24. 24.
    Luo CH, Zhao B, Li Z (2012) Dual stimuli-responsive polymers derived from α-amino acids: effects of molecular structure, molecular weight and end-group. Polymer 53(8):1725–1732CrossRefGoogle Scholar
  25. 25.
    Mori H, Kato I, Saito S, Endo T (2010) Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 43(3):1289–1298CrossRefGoogle Scholar
  26. 26.
    Song ZF, Wang K, Gao CQ, Wang S, Zhang WQ (2016) A new thermo-, pH-, and CO2-responsive Homopolymer of poly N-2-(diethylamino)ethyl acrylamide: is the Diethylamino group underestimated? Macromolecules 49(1):162–171CrossRefGoogle Scholar
  27. 27.
    Zhou M, Liu K, Qian X (2016) A facile preparation of pH-temperature dual stimuli-responsive supramolecular hydrogel and its controllable drug release. J. Appl. Polym. Sci. 133(15):43279–43285CrossRefGoogle Scholar
  28. 28.
    Ros R, Munoz-Bertomeu J, Krueger S (2014) Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci. 19(9):564–569PubMedCrossRefGoogle Scholar
  29. 29.
    Kalhan SC, Hanson RW (2012) Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 287(24):19786–19791PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19(14):1287–1294PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Pan TT, He WD, Li LY, Jiang WX, He C, Tao J (2011) Dual thermo- and pH-sensitive network-grafted hydrogels formed by macrocrosslinker as drug delivery system. J. Polym. Sci. Part A: Polym. Chem. 49(10):2155–2164CrossRefGoogle Scholar
  32. 32.
    Park YI, Lee KH (2001) Preparation of water-swollen hydrogel membranes for gas separation. J. Appl. Polym. Sci. 80(10):1785–1791CrossRefGoogle Scholar
  33. 33.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23CrossRefGoogle Scholar
  34. 34.
    Luo YL, Zhang KP, Wei QB, Liu ZQ, Chen YS (2009) Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Acta Biomater. 5(1):316–327PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Turan E, Çaykara T (2007) Swelling and network parameters of pH-sensitive poly(acrylamide-co-acrylic acid) hydrogels. J. Appl. Polym. Sci. 106(3):2000–2007CrossRefGoogle Scholar
  36. 36.
    Touitou E, Donbrow M (1982) Drug release from non-disintegrating hydrophilic matrices: sodium salicylate as a model drug. Int. J. Pharm. 11(4):335–364CrossRefGoogle Scholar
  37. 37.
    Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter KV, Sherman NE, Amirault J, Wang Y, Riegel L, He X, Rui TS, Valic M, Vemula PK, Miranda OR, Levy O, Gravallese EM, Aliprantis AO, Ermann J, Karp JM (2018) Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9(1):1275–1285PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX (2007) Synthesis and characterization of well-defined, amphiphilic poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-poly(ε-caprolactone)]n graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci Part A: Polym Chem 45(22):5354–5364CrossRefGoogle Scholar
  39. 39.
    Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 64:163–174CrossRefGoogle Scholar
  40. 40.
    Lee PI (1985) Kinetics of drug release from hydrogel matrices. J. Controlled Release 2:277–288CrossRefGoogle Scholar
  41. 41.
    Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Controlled Release 5(1):37–42CrossRefGoogle Scholar
  42. 42.
    Ritger PL, Peppas NA (1987) Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5(1):23–36CrossRefGoogle Scholar
  43. 43.
    Sarkyt EK, Sigitov VB (1999) Swelling, shrinking, deformation, and oscillation of Polyampholyte gels based on vinyl 2-Aminoethyl ether and sodium acrylate. Langmuir 15(12):4230–4235CrossRefGoogle Scholar
  44. 44.
    Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25(17):3725–3732PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sun Y, Li ZB, Wang ZH (2012) Self-assembled monolayer and multilayer films based on L-lysine functionalized perylene bisimide. J. Mater. Chem. 22:4312–4318CrossRefGoogle Scholar
  46. 46.
    Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24(10):2912–2919CrossRefGoogle Scholar
  47. 47.
    Kyriazis A, Aubry T, Burchard W, Tsitsilianis C (2009) Colloidal gel from amphiphilic heteroarm polyelectrolyte stars in aqueous media. Polymer 50(14):3204–3210CrossRefGoogle Scholar
  48. 48.
    Mori H, Iwaya H, Nagai A, Endo T (2005) Controlled synthesis of thermoresponsive polymers derived from L-proline via RAFT polymerization. Chem. Commun. (38):4872-4874Google Scholar
  49. 49.
    Fu WX, Luo CH, Morin EA, He W, Li ZB, Zhao B (2017) UCST-type Thermosensitive hairy Nanogels synthesized by RAFT polymerization-induced self-assembly. ACS Macro Lett. 6(2):127–133CrossRefGoogle Scholar
  50. 50.
    Wang XM, Bian G, Zhang M, Chang LM, Li ZW, Li X, An H, Qin JL, Chang RX, Wang HJ (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym. Chem. 8(18):2872–2880CrossRefGoogle Scholar
  51. 51.
    Wang XM, Chang LM, Hu J, Lang XJ, Fu XH, An H, Wang Y, Wang HJ, Qin JL (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208CrossRefGoogle Scholar
  52. 52.
    Du HL, Liu MR, Yang XY, Zhai GX (2015) The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today 20(8):1004–1011PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wei W, Li JJ, Qi XL, Zhong Y, Zuo GC, Pan XH, Su T, Zhang JF, Dong W (2017) Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery. Carbohydr. Polym. 177:275–283PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Huh HW, Zhao L, Kim SY (2015) Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 126:130–140PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hu YF, Darcos V, Monge S, Li SM, Zhou Y, Su F (2014) Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. Int. J. Pharm. 476(1):31–40PubMedCrossRefGoogle Scholar
  56. 56.
    Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 93:1–49CrossRefGoogle Scholar
  57. 57.
    Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 7(4):1329–1334PubMedCrossRefGoogle Scholar
  58. 58.
    Shih YJ, Chang Y (2010) Tunable blood compatibility of Polysulfobetaine from controllable molecular-weight dependence of Zwitterionic nonfouling nature in aqueous solution. Langmuir 26(22):17286–17294PubMedCrossRefGoogle Scholar
  59. 59.
    Xiao XC, Chu LY, Chen WM, Zhu JH (2005) Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46(9):3199–3209CrossRefGoogle Scholar
  60. 60.
    Xu B, Zhang YY, Liu WG (2015) Hydrogen-bonding toughened hydrogels and emerging CO2-responsive shape memory effect. Macromol. Rapid Commun. 36(17):1585–1591PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanChina
  2. 2.Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs CommissionNorth Minzu UniversityYinchuanChina
  3. 3.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical EngineeringNingxia UniversityYinchuanChina

Personalised recommendations