Advertisement

Journal of Polymer Research

, 26:273 | Cite as

Formation of gradient polymer lenses by non-stationary luminous flux

  • Yuri Victorovich PolushtaytsevEmail author
  • Sergey Nickolaevich Mensov
ORIGINAL PAPER
  • 29 Downloads

Abstract

The diffusion processes in a layer of a photopolymerizable composition stimulated by non-stationary optical radiation causing the relocation of the neutral component concentration and formation of smooth distributions of the refractive index were investigated. By the method of computer simulation, it was shown that with the photopolymerization of such a multi-component medium, moving the illumination boundary along the polymerized layer makes it possible to create gradient polymer lenses with a parabolic and Gaussian profile of the refractive index. The experimental results on the optical formation of flat elements of gradient polymeric optics from the industrial oligomer OCM-2 with butanol as a neutral component are presented.

Keywords

Photopolymer GRIN optics Non-stationary photopolymerization Moving boundaries 

Notes

Acknowledgments

This work was supported by by the Russian Science Foundation (proj. no. 15-13-00137-P).

Funding

Russian Science Foundation 15-13-00137-P.

References

  1. 1.
    Born M, Wolf E (1999) Principles of optics. Cambridge University, CambridgeCrossRefGoogle Scholar
  2. 2.
    Ji S, Yin K, Mackey M, Brister A, Ponting M, Baer E (2013) Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses. Opt Eng 52(11):112105CrossRefGoogle Scholar
  3. 3.
    Dymshits OS, Zhilin AA, Shashkin AV (2008) Method of making glassceramic lens with refraction index gradient. Patent RU 2385845Google Scholar
  4. 4.
    Liu J-H, Wang H-Y, Ho C-H (2003) Fabrication and characterization of gradient refractive index plastic rods containing inorganic nanoparticles. J Polym Res 10:13–20CrossRefGoogle Scholar
  5. 5.
    Yu M, Tsai M, Schmidt GR, Anthamatten M (2015) Gradient-index materials based on thiol − ene networks. ACS Appl Mater Interfaces 7:8601–8605CrossRefGoogle Scholar
  6. 6.
    Veniaminov AV, Mahilny VV (2013) Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications. Opt Spectrosc 115(6):906–930CrossRefGoogle Scholar
  7. 7.
    Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C, Fally M (2016) Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J Modern Optics 63(S3):S1–S31CrossRefGoogle Scholar
  8. 8.
    Lonin AL, Mensov SN, Polushtaytsev YV (2004) Causes of the filamentary instability of optical-beam self-channeling in Photopolymerizable compositions. JETP Lett 79(11):515–518CrossRefGoogle Scholar
  9. 9.
    Baten’kin MA, Mensov SN, Romanov AV (2008) The use of low-viscosity neutral components for increasing the diffraction efficiency of photopolymer holograms. Opt Spectrosc 104(1):135–139CrossRefGoogle Scholar
  10. 10.
    Mensov SN, Morozova MA, Polushtaytsev YV (2016) Formation of periodic phase structures in a Photopolymerizable layer by nonstationary light beams. Opt Spectrosc 121(3):438–444CrossRefGoogle Scholar
  11. 11.
    Baten’kin MA, Mensov SN, Morozova MA, Polushtaytsev YV (2015) Neutral component localization in the volume of photopolymerizable medium by the counter moving boundaries of initiating radiation action. J Polym Res 22:247CrossRefGoogle Scholar
  12. 12.
    Mensov SN, Morozova MA, Polushtaytsev YV (2018) Optical formation and transport of a local region with an increased content of a neutral component in a photopolymerizable composite layer. JETP Lett 108(8):553–556CrossRefGoogle Scholar
  13. 13.
    Egorov GS, Stepanov NS (1982) Simulation of a gravitational lens in a lecture demonstration. Sov Phys Usp 25:705–707CrossRefGoogle Scholar
  14. 14.
    Mayer VV (2007) Light in optically inhomogeneous medium. Physmathlit, Moscow [in russian]Google Scholar
  15. 15.
    Ya C, Gan Z, Jia B, Evans RA, Gu M (2011) High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt Express 19(20):19486–19494CrossRefGoogle Scholar
  16. 16.
    Formana DL, Heuvelmanb GL, McLeoda RR (2012) Materials development for photoinhibited superresolution (PINSR) lithography. Proc SPIE 8249:824904CrossRefGoogle Scholar
  17. 17.
    Kazak NS, Krening M, Mashchenko AG, Ropot PI (2007) A controlled conical Lens for the formation of Bessel light beams. Opt Spectrosc 130(5):826–830Google Scholar
  18. 18.
    Chesnokov SA, Cherkasov VK, Abakumov GA, Mamysheva ON, Chechet YV, Nevodchikov VI (2001) Influence of o-benzoquinone nature on initiation of radical polymerization by the o-benzoquinone – tert-amine system. Russ Chem Bull 50(12):2366–2371CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Yuri Victorovich Polushtaytsev
    • 1
    Email author
  • Sergey Nickolaevich Mensov
    • 1
    • 2
  1. 1.G.A.Razuvaev Institute of Organometallic Chemistry of Russian Academy of Science (RAS)Nizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations