Advertisement

Journal of Polymer Research

, 26:251 | Cite as

Facile synthesis of graft copolymers of maltodextrin and chitosan with 2-acrylamido-2-methyl-1-propanesulfonic acid for efficient removal of Ni(II), Fe(III), and Cd(II) ions from aqueous media

  • Ehab A. AbdelrahmanEmail author
  • Enas T. Abdel-Salam
  • S. M. El Rayes
  • Nesma S. Mohamed
ORIGINAL PAPER

Abstract

In this paper, graft copolymers of maltodextrin or chitosan with 2-acrylamido-2-methyl-1-propanesulfonic acid were synthesized and labeled P1 or P2, respectively. Also, homopolymer of 2-acrylamido-2-methyl-1-propanesulfonic acid was synthesized and labeled P3. The synthesized polymers were characterized using different tools such as CHNS elemental analysis, FT-IR, and UV-Vis spectrophotometer. The synthesized polymers were used as adsorbents for the removal of Ni(II), Fe(III), and Cd(II) ions from aqueous media. Contact time, pH, concentration of metal ions, and amount of polymers were studied. The adsorption of Ni(II) ions using P1, P2, or P3 samples follows the pseudo-first-order. Also, the adsorption of Fe(III) ions using P1 or P2 samples follows the pseudo-second-order. In addition, the adsorption of Fe(III) ions using P3 sample follows the pseudo-first-order. Besides, the adsorption of Cd(II) ions using P1 or P3 samples follows the pseudo-first-order. Moreover, the adsorption of Cd(II) ions using P2 sample follows the pseudo-second-order. The adsorption of Ni(II), Fe(III), or Cd(II) ions using P1, P2, or P3 samples follows the Langmuir isotherm. Qm of P1, P2, and P3 toward Ni(II) ions equals 26.66, 32.74, and 27.33 mg g−1, respectively. Also, Qm of P1, P2, and P3 toward Fe(III) ions equals 29.31, 28.97, and 29.01 mg g−1, respectively. In addition, Qm of P1, P2, and P3 toward Cd(II) ions equals 27.46, 34.81, and 35.59 mg g−1, respectively.

Keywords

Carbohydrate polymers Adsorption Metal ions Kinetic models Adsorption isotherms 

Notes

References

  1. 1.
    Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Yang Z, Ayoko GA, Frost RL, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena. 175:339–348CrossRefGoogle Scholar
  2. 2.
    Wen X, Lu J, Wu J, Lin Y, Luo Y (2019) Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Sci Total Environ 652:267–277PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sun C, Zhang Z, Cao H, Xu M, Xu L (2019) Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere. 219:538–545PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bahadur V, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water: a review. J Environ Manag 232:803–817CrossRefGoogle Scholar
  5. 5.
    Mahlambi MM, Malefetse TJ, Mamba BB, Krause RW (2010) β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J Polym Res 17:589–600CrossRefGoogle Scholar
  6. 6.
    Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101–105CrossRefGoogle Scholar
  7. 7.
    Haddad MY, Alharbi HF, Karim MR, Aijaz MO, Alharthi NH (2018) Preparation of TiO2 incorporated polyacrylonitrile electrospun nanofibers for adsorption of heavy metal ions. J Polym Res 25:218–220CrossRefGoogle Scholar
  8. 8.
    Kumar P, Soo S, Zhang M, Fai Y, Kim K (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385CrossRefGoogle Scholar
  9. 9.
    Liu Q, Xu X, Zeng J, Shi X, Liao Y, Du P, Bay X (2019) Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Mar Pollut Bull 141:215–226PubMedCrossRefGoogle Scholar
  10. 10.
    Bay L (2019) Occurrence, potential health risk of heavy metals in aquatic organisms from Laizhou Bay, China. Mar Pollut Bull 140:388–394CrossRefGoogle Scholar
  11. 11.
    Pyrzynska K (2019) Removal of cadmium from wastewaters with low-cost adsorbents. J Environ Chem Eng 7:102795–102800CrossRefGoogle Scholar
  12. 12.
    Kahrizi P, Mohseni FS, Farid S (2018) Adsorptive removal of cadmium from aqueous solutions using NiFe2O4/hydroxyapatite/graphene quantum dots as a novel nano-adsorbent. J Nanostructure Chem 8:441–452CrossRefGoogle Scholar
  13. 13.
    Hoyos-sánchez MC, Córdoba-pacheco AC, Rodríguez-herrera LF, Uribe-kaffure R (2017) Removal of Cd(II) from aqueous media by adsorption onto chemically and thermally treated rice husk. J Chem 20:1–8CrossRefGoogle Scholar
  14. 14.
    Sheibani A, Shishehbor MR, Alaei H (2012) Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent. Int J Indust Chem 3:3–6CrossRefGoogle Scholar
  15. 15.
    Zhang H, Zhabyeyev P, Wang S, Oudit GY (2018) Role of iron metabolism in heart failure: from iron deficiency to iron overload. BBA-Mol Basis Dis.  https://doi.org/10.1016/j.bbadis.2018.08.030 CrossRefGoogle Scholar
  16. 16.
    Zambelli B, Uversky VN, Ciurli S (2016) Nickel impact on human health: an intrinsic disorder perspective. Biochim Biophys Acta 1864:1714–1731PubMedCrossRefGoogle Scholar
  17. 17.
    Yeganeh M, Afyuni M, Khoshgoftarmanesh A, Khodakarami L (2013) Mapping of human health risks arising from soil nickel and mercury contamination. J Hazard Mater 244–245:225–239PubMedCrossRefGoogle Scholar
  18. 18.
    Yu J, Zhang J, Song S, Liu H, Guo Z, Zhang C (2019) Removal of Ni(II) from aqueous solutions using activated carbon with manganese formate hydrate in-situ modification. Colloids Surf A 560:84–91CrossRefGoogle Scholar
  19. 19.
    Abdelrahman EA, Tolan DA, Nassar MY (2019) A tunable template-assisted hydrothermal synthesis of hydroxysodalite zeolite nanoparticles using various aliphatic organic acids for the removal of zinc(II) ions from aqueous media. J Inorg Organomet Polym Mater 29:229–247CrossRefGoogle Scholar
  20. 20.
    Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng C 31:1062–1067CrossRefGoogle Scholar
  21. 21.
    Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Devaraj M, Saravanan R, Deivasigamani R, Gupta VK, Gracia F, Jayadevan S (2016) Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq 221:930–941CrossRefGoogle Scholar
  23. 23.
    Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Saravanan R, Gupta VK, Prakash T, Narayanan V, Stephen A (2013) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq 178:88–93CrossRefGoogle Scholar
  27. 27.
    Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251CrossRefGoogle Scholar
  28. 28.
    Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33:2235–2244CrossRefGoogle Scholar
  29. 29.
    Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33:4725–4731CrossRefGoogle Scholar
  30. 30.
    Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33:91–98CrossRefGoogle Scholar
  31. 31.
    Saravanan R, Mansoob Khan M, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651CrossRefGoogle Scholar
  33. 33.
    Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033CrossRefGoogle Scholar
  34. 34.
    Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Kumar Gupta V (2015) Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv 5:18438–18450CrossRefGoogle Scholar
  35. 35.
    Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401CrossRefGoogle Scholar
  36. 36.
    Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18CrossRefGoogle Scholar
  37. 37.
    Gupta VK, Nayak A, Agarwal S, Tyagi I (2014) Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 417:420–430PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183:402–409PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res Int 20:2828–2843PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mittal A, Mittal J, Malviya A, Gupta VK (2010) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507PubMedCrossRefGoogle Scholar
  41. 41.
    Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta VK (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697CrossRefGoogle Scholar
  42. 42.
    Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011) Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J Colloid Interface Sci 362:457–462PubMedCrossRefGoogle Scholar
  43. 43.
    Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interf Sci 211:93–101CrossRefGoogle Scholar
  44. 44.
    Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50(24):13589–13613CrossRefGoogle Scholar
  45. 45.
    Abdelrahman EA, Hegazey RM (2019) Utilization of waste aluminum cans in the fabrication of hydroxysodalite nanoparticles and their chitosan biopolymer composites for the removal of Ni(II) and Pb(II) ions from aqueous solutions: kinetic , equilibrium , and reusability studies. Microchem J 145:18–25CrossRefGoogle Scholar
  46. 46.
    Abdelrahman EA, Hegazey RM (2019) Exploitation of Egyptian insecticide cans in the fabrication of Si/Fe nanostructures and their chitosan polymer composites for the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions. Compos Part B 166:382–400CrossRefGoogle Scholar
  47. 47.
    Wu D, Wang Y, Li Y, Wei Q, Hu L, Yan T, Feng R, Yan L, Du B (2019) Phosphorylated chitosan/CoFe2 O4 composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies. J Mol Liq 277:181–188CrossRefGoogle Scholar
  48. 48.
    Da A, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106CrossRefGoogle Scholar
  49. 49.
    Singh DK, Mishra S (2009) Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer. J Hazard Mater 164:1547–1551PubMedCrossRefGoogle Scholar
  50. 50.
    Argun ME, Dursun S, Karatas M (2009) Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination. 249:519–527CrossRefGoogle Scholar
  51. 51.
    Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan – MAA nanoparticles. Int J Biol Macromol 61:251–263PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zeolite T, Hashemian S, Hosseini SH, Salehifar H, Salari K (2013) Adsorption of Fe(III) from aqueous solution by Linde type-A zeolite. Am J Analyt Chem 4:123–126CrossRefGoogle Scholar
  53. 53.
    Qi H, Jiang X, Zhou D, Zhu B, Qin L, Ma C, Ong Y, Murata Y (2013) Removal of heavy metals in aqueous solution using antarctic krill chitosan /hydroxyapatite composite. Fiber Polym 14:1134–1140CrossRefGoogle Scholar
  54. 54.
    Atta AM, Ismail HS, Mohamed HM, Mohamed ZM (2011) Acrylonitrile/Acrylamidoxime/2-Acrylamido-2-methylpropane sulfonic acid-based hydrogels: synthesis, characterization and their application in the removal of heavy metals. J Appl Polym Sci 122:999–1011CrossRefGoogle Scholar
  55. 55.
    Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191CrossRefGoogle Scholar
  56. 56.
    Azmeera V, Adhikary P, Krishnamoorthi S (2012) Synthesis and characterization of graft copolymer of dextran and 2-acrylamido-2-methylpropane sulphonic acid. Int J Carbohydr Chem 2012:1–8CrossRefGoogle Scholar
  57. 57.
    Soykan C, Coskun R, Delibas A (2007) Copolymers of 2-acrylamido-2-methyl-1-propanesulfonic acid/maleic acid: synthesis, characterization and antimicrobial activity. Chin J Polym Sci 5:491–500CrossRefGoogle Scholar
  58. 58.
    Zhang X, Dou Y, Gao C, He C, Gao J, Zhao S, Deng L (2019) Removal of Cd(II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems. Sci Total Environ 685:951–962PubMedCrossRefGoogle Scholar
  59. 59.
    Nazarzadeh E, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Ehab A. Abdelrahman
    • 1
    Email author
  • Enas T. Abdel-Salam
    • 2
  • S. M. El Rayes
    • 2
  • Nesma S. Mohamed
    • 2
  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Chemistry Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations