Journal of Polymer Research

, 26:291 | Cite as

Facile one pot synthesis of strong epoxy/agar hybrid hydrogels

  • Masihullah Jabarulla KhanEmail author
  • Qipeng Guo
  • Russell Varley


Epoxy biopolymer hybrid hydrogels have excellent potential for load bearing applications, despite limited studies in this area. In this paper, a facile one-pot synthesis of epoxy/agar hybrid hydrogels has been reported. Infrared spectroscopy, rheometry, thermal, mechanical properties and immersion studies have been reported. An advantage of the hydrogels synthesized here is that they can be prepared in a shorter timeframe than conventional epoxy biopolymer hydrogels. Diethylene triamine was used as the cross-linker which induces gelation within five minutes at 90 °C. The mechanical properties of epoxy hydrogels prepared using diethylene triamine are found to be comparable to that of hydrogels prepared using long chain amine terminated poloxamers. The compressive toughness of the hybrid hydrogels increases by ~380% via the addition of 3 wt% agar in comparison with epoxy hydrogels. These hybrid hydrogels are elastic and biodegradable.

Graphical Abstract

Epoxy agar hybrid hydrogel with enhanced compressive toughness was prepared using a combination of covalent and physical bonding. The hybrid hydrogels could be produced in very short time compared to conventional epoxy based hydrogels and show potential to be applied in load bearing applications


hydrogels toughness structure - property mechanical properties epoxy 


Supplementary material

10965_2019_1912_MOESM1_ESM.mp4 (4.4 mb)
ESM 1 (MP4 4.43 mb)


  1. 1.
    Li Y, Rodrigues J, Tomas H (2012). Chem Soc Rev 41:2193–2221CrossRefGoogle Scholar
  2. 2.
    Gupta KVP, Garg S (2002). Drug Discov Today 7:569–579CrossRefGoogle Scholar
  3. 3.
    Nicolsonm PC, Vogt J (2001). Biomaterials 22:3273–3283CrossRefGoogle Scholar
  4. 4.
    (2009) Calvert. Adv Mater 21:743–756Google Scholar
  5. 5.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003). Adv Mater 15:1155–1158CrossRefGoogle Scholar
  6. 6.
    Osada Y, Okuzaki H, Hori H (1992). Nature 355:242–244CrossRefGoogle Scholar
  7. 7.
    Osada Y, Gong J-P (1998). Adv Mater 10:827–837CrossRefGoogle Scholar
  8. 8.
    Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009). Adv Mater 21:1712–1715CrossRefGoogle Scholar
  9. 9.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000). Nature 404:588–590CrossRefGoogle Scholar
  10. 10.
    Satarkar NS, Zhang W, Eitel RE, Hilt JZ (2009). Lab Chip 9:1773–1779CrossRefGoogle Scholar
  11. 11.
    Tanaka Y, Gong JP, Osada Y (2005). Prog Polym Sci 30:1–9CrossRefGoogle Scholar
  12. 12.
    Okumura Y, Ito K (2001). Adv Mater 13:485–487CrossRefGoogle Scholar
  13. 13.
    Haraguchi K, Takehisa T (2002). Adv Mater 14:1120–1124CrossRefGoogle Scholar
  14. 14.
    Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U-i (2008). Macromolecules 41:5379–5384CrossRefGoogle Scholar
  15. 15.
    Haraguchi K (2007). Curr Opinion Solid State Mater Sci 11:47–54CrossRefGoogle Scholar
  16. 16.
    Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007). Adv Mater 19:1622–1626CrossRefGoogle Scholar
  17. 17.
    Haque MA, Kurokawa T, Kamita G, Gong JP (2011). Macromolecules 44:8916–8924CrossRefGoogle Scholar
  18. 18.
    Dragan ES (2014). Chem Eng J 243:572–590CrossRefGoogle Scholar
  19. 19.
    Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P, in het Panhuis M (2012). Soft Matter 8:9985–9988CrossRefGoogle Scholar
  20. 20.
    Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012). Nature 489:133–136CrossRefGoogle Scholar
  21. 21.
    Stevens L, Calvert P, Wallace GG, in het Panhuis M (2013). Soft Matter 9:3009–3012CrossRefGoogle Scholar
  22. 22.
    K. D. B. Berkay Ozcelika, Anton Blencowea, Mark Daniellb, Geoff W. Stevensa, Greg G. Qiao, 2013,, 9, 6594–6605Google Scholar
  23. 23.
    Xiong J-Y, Narayanan J, Liu X-Y, Chong TK, Chen SB, Chung T-S (2005). J Phys Chem B 109:5638–5643CrossRefGoogle Scholar
  24. 24.
    Cayre OJ, Chang ST, Velev OD (2007). J Am Chem Soc 129:10801–10806CrossRefGoogle Scholar
  25. 25.
    Saris DB, Mukherjee N, Berglund LJ, Schultz FM, An KN, O'Driscoll SW (2000). Tissue Eng 6:531–537CrossRefGoogle Scholar
  26. 26.
    Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013). Adv Mater 25:4171–4176CrossRefGoogle Scholar
  27. 27.
    Bakarich SE, in het Panhuis M, Beirne S, Wallace GG, Spinks GM (2013). J Mater Chem B 1:4939–4946CrossRefGoogle Scholar
  28. 28.
    Moura MJ, Faneca H, Lima MP, Gil MH, Figueiredo MM (2011). Biomacromolecules 12:3275–3284CrossRefGoogle Scholar
  29. 29.
    Krakovsky I, Shikata T, Hasegawa R (2013). J Phys Chem B 117:14122–14128CrossRefGoogle Scholar
  30. 30.
    Szekély N, Krakovský I (2009). Eur Polym J 45:1385–1390CrossRefGoogle Scholar
  31. 31.
    Krakovský I, Székely NK (2011). Eur Polym J 47:2177–2188CrossRefGoogle Scholar
  32. 32.
    Krakovský I, Pleštil J, Almásy L (2006). Polymer 47:218–226CrossRefGoogle Scholar
  33. 33.
    Pourjavadi A, Farhadpour B, Seidi F (2009). J Polym Res 16:655–665CrossRefGoogle Scholar
  34. 34.
    Rossi F, Perale G, Storti G, Masi M (2012). J Appl Polym Sci 123:2211–2221CrossRefGoogle Scholar
  35. 35.
    Hao J, Weiss RA (2011). Macromolecules 44:9390–9398CrossRefGoogle Scholar
  36. 36.
    Abdurrahmanoglu S, Okay O (2008). Macromolecules 41:7759–7761CrossRefGoogle Scholar
  37. 37.
    Okay O, Oppermann W (2007). Macromolecules 40:3378–3387CrossRefGoogle Scholar
  38. 38.
    Fan J, Shi Z, Lian M, Li H, Yin J (2013). J Mater Chem A 1:7433–7443CrossRefGoogle Scholar
  39. 39.
    Sui K, Gao S, Wu W, Xia Y (2010). J Polym Sci A Polym Chem 48:3145–3151CrossRefGoogle Scholar
  40. 40.
    Abdurrahmanoglu S, Can V, Okay O (2009). PolymerGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Carbon Nexus at the Institute for Frontier MaterialDeakin UniversityGeelongAustralia
  2. 2.Institute for Frontier MaterialDeakin UniversityGeelongAustralia

Personalised recommendations