Advertisement

Journal of Polymer Research

, 26:246 | Cite as

Improvement of mechanical toughness of polypropylene by laminating with elastomer

  • Ryosuke Hachisuka
  • Toshiaki Kobayashi
  • Masayuki YamaguchiEmail author
ORIGINAL PAPER
  • 29 Downloads

Abstract

We used three-point bending tests to investigate the effects of elastomer lamination on the failure mode of bar-shaped products using isotactic polypropylene (PP). When a thermoplastic elastomer sheet was laminated on PP, which was prepared by double-shot injection molding, the specimen showed high mechanical toughness without signs of stress whitening. Although rubbery materials have low tensile moduli, their bulk moduli are comparable to those of plastics. Therefore, the laminated elastomer, located inside of the bending deformation, prohibits sharp bending angles during the deformation. Consequently, craze formation, which is the origin of stress whitening and leads to brittle fracture, hardly occurs.

Keywords

Polypropylene Elastomer Lamination Bending test 

Notes

References

  1. 1.
    Isayev A, Hung KM (2009) Co-injection molding of polymers, in injection molding, Eds. Kamal, M.; Isayev, A.; Liu, S. Chap. 21. Hanser, MunichGoogle Scholar
  2. 2.
    Kazmer RO (2016) Injection mold design engineering2nd edn. Hanser, MunichCrossRefGoogle Scholar
  3. 3.
    Geminger T, Jarka S (2016) Injection molding of multimaterial systems. In: Heim HP (ed) Specialized injection molding techniques, Chap. 4. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Arayachukiat S, Doan VA, Murakami T, Nobukawa S, Yamaguchi M (2015). J Appl Polym Sci 132:42008CrossRefGoogle Scholar
  5. 5.
    Sako T, Nobukawa S, Yamaguchi M (2015) Surface localization of poly(methyl methacrylate) in a miscible blend with polycarbonate. Polym J 47:576–579CrossRefGoogle Scholar
  6. 6.
    Sako T, Ito A, Yamaguchi M (2017) Surface segregation during injection molding of polycarbonate/poly(methyl methacrylate) blend. J Polym Res 24:89CrossRefGoogle Scholar
  7. 7.
    Yamaguchi M, Irie Y, Phulkerd P, Hagihara H, Hirayama S, Sasaki S (2010) Plywood-like structure of injection-moulded polypropylene. Polymer 51:5983–5989CrossRefGoogle Scholar
  8. 8.
    Phulkerd P, Hirayama S, Nobukawa S, Inoue T, Yamaguchi M (2014) Structure and mechanical anisotropy of injection-molded polypropylene with a plywood structure. Polym J 46:226–233CrossRefGoogle Scholar
  9. 9.
    Mills NJ, Zhang PS (1989) The effects of contact conditions on impact tests on plastics. J Mater Sci 24:2099–2109CrossRefGoogle Scholar
  10. 10.
    Xie M, Zhang Y, Krasny MJ, Rhead A, Bowen C, Arafa M (2018) Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates. Mech. Sys. Sign. Proc 107:429–438CrossRefGoogle Scholar
  11. 11.
    Fedorko G, Molnar V, Honus S, Belusko M, Tomaskova M (2018) Influence of selected characteristics on failures of the conveyor belt cover layer material. Eng. Failure Anal 94:145–156CrossRefGoogle Scholar
  12. 12.
    Han J, Lv J, Zhan X, Huang R, Xu X (2016). Bioresources 11:6677–6691Google Scholar
  13. 13.
    Staab GH (2016) Laminar Composites 2nd edn. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Kausch H, Polymer H (1986) Fracture 2nd edn. Berlin, Springer-VerlagGoogle Scholar
  15. 15.
    Narisawa I, Kuriyama T, Ojima K (1991) Crazing and shear deformation of polymer alloys. Macromol Symp 41:87–107CrossRefGoogle Scholar
  16. 16.
    Lazzeri A, Bucknall CB (2000) Recent developments in the modeling of dilatational yielding in toughened plastics, in toughening of plastics, Eds., Pearson, R. A.; Sue, H. J.; Yee, A. F. Chap. 2. American Chemical Society, Washington DCGoogle Scholar
  17. 17.
    Argon AS (2013) The physics of deformation and fracture of polymers. Chap.12. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Kinloch AJ, Young GJ (2013) Fracture behavior of polymers. Springer, BerlinGoogle Scholar
  19. 19.
    Tenma M, Yamaguchi M (2007) Structure and properties of injection-molded polypropylene with sorbitol-based clarifier. Polym Eng Sci 47:1441–1446CrossRefGoogle Scholar
  20. 20.
    Felekoglu B (2014). Civ Eng 58:279–291Google Scholar
  21. 21.
    Folkes MJ, Hardwick ST (1990) The mechanical properties of glass/polypropylene multilayer laminates. J Mater Sci 25:2598–2606CrossRefGoogle Scholar
  22. 22.
    Bucknall CB, Smith RR (1965) Stress-whitening in high-impact polystyrenes. Polymer 6:437–446CrossRefGoogle Scholar
  23. 23.
    Brown N, Ward IM (1983) The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J Mater Sci 18:1405–1420CrossRefGoogle Scholar
  24. 24.
    Chiu HT, Shiau YG, Chiu WM, Syau SS (1995) Toughening isotactic polypropylene and propylene-ethylene block copolymer with styrene-ethylene butylene-styrene triblock copolymer. J Polym Res 2:21–29CrossRefGoogle Scholar
  25. 25.
    Liu Y, Kennard CHL, Truss RW, Calos NJ (1997) Characterization of stress-whitening of tensile yielded isotactic polypropylene. Polymer 38:2797–2805CrossRefGoogle Scholar
  26. 26.
    Yamaguchi M, Nitta K (1999) Optical and acoustical investigation for plastic deformation of isotactic polypropylene/ethylene-1-hexene copolymer blends. Polym Eng Sci 39:833–840CrossRefGoogle Scholar
  27. 27.
    Hegde RR, Bhat GS, Spruiell JE, Benson R (2013) Structure and properties of polypropylene-nanoclay composites. J Polym Res 20:323–335CrossRefGoogle Scholar
  28. 28.
    van Krevelen DW, Te Nijenhuis K (2009) Properties of Polymers4th edn. Elsevier, AmsterdamGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Ryosuke Hachisuka
    • 1
    • 2
  • Toshiaki Kobayashi
    • 3
  • Masayuki Yamaguchi
    • 1
    Email author
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.Oral Care Research Laboratories, Research & Development HeadquartersLion CorporationTokyoJapan
  3. 3.The Lion Foundation for Dental Health(Public Interest Incorporated Foundation)TokyoJapan

Personalised recommendations