Advertisement

Journal of Polymer Research

, 26:245 | Cite as

Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer

  • Lan Chen
  • Yaoding Yang
  • Zhong Xin
  • Wei Qin
  • Shuai Zhou
  • Shicheng ZhaoEmail author
ORIGINAL PAPER
  • 20 Downloads

Abstract

In this study we generated zinc adipate (ZnAA) in situ [referred to herein as “ZnAA(IS)”] through the addition of its reaction precursors—adipic acid and zinc oxide—during the extrusion of impact polypropylene copolymer (IPC); we then investigated its nucleation performance as β nucleating agent using differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, and tests of mechanical properties. When compared with the pre-addition of ZnAA, the generation of ZnAA(IS) in situ resulted in higher nucleation effect toward the IPC, due to the smaller average particle size and more uniform dispersion of ZnAA(IS). In particular, compared with the neat IPC, the impact strength of the IPC prepared using 0.1 wt% of ZnAA(IS) increased by 103% at low temperature (−20 °C), whereas that of the IPC prepared with ZnAA increased by 38.9% under the same conditions. Moreover, when using Flash DSC to examine the crystallization behavior of the IPC under rapid cooling, we observed that, upon increasing the cooling rate, two crystalline peaks appeared for the neat and nucleated IPCs, presumably because of the crystallization of both the PP and PE homopolymers.

Keywords

β-Nucleating agent Zinc adipate Crystallization Dispersion Polypropylene 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 21878089 and 21606084), National Key R&D Program of China (2016YFB0302201) and the Fundamental Research Funds for the Central Universities (22221818010).

References

  1. 1.
    Chen Y, Yang S, Yang H, Zhang M, Zhang Q, Li Z (2016) Toughness reinforcement in carbon nanotube-filled high impact polypropylene copolymer with beta-nucleating agent. Ind Eng Chem Res 55(32):8733–8742.  https://doi.org/10.1021/acs.iecr.6b01226 CrossRefGoogle Scholar
  2. 2.
    Qiu B, Chen F, Lin Y, Shangguan Y, Zheng Q (2014) Control of multilayered core-shell dispersed particles in HPP/EPR/EbP blends and its influences on crystallization and dynamic mechanical behavior. Polymer 55(23):6176–6185.  https://doi.org/10.1016/j.polymer.2014.09.060 CrossRefGoogle Scholar
  3. 3.
    Song S, Feng J, Wu P, Yang Y (2009) Shear-enhanced crystallization in impact-resistant polypropylene copolymer: influence of compositional heterogeneity and phase structure. Macromolecules 42(18):7067–7078.  https://doi.org/10.1021/ma9004764 CrossRefGoogle Scholar
  4. 4.
    Tan HS, Li L, Chen ZN, Song YH, Zheng Q (2005) Phase morphology and impact toughness of impact polypropylene copolymer. Polymer 46(10):3522–3527.  https://doi.org/10.1016/j.polylmer.2005.02.088 CrossRefGoogle Scholar
  5. 5.
    Zhang C, Shangguan Y, Chen R, Wu Y, Chen F, Zheng Q, Hu G (2010) Morphology, microstructure and compatibility of impact polypropylene copolymer. Polymer 51(21):4969–4977.  https://doi.org/10.1016/j.polymer.2010.08.021 CrossRefGoogle Scholar
  6. 6.
    Motsoeneng TS, Luyt AS, van Reenen AJ (2014) Investigation of the crystalline phase morphology of a beta-nucleated impact polypropylene copolymer. J Appl Polym Sci 131(4).  https://doi.org/10.1002/app.39923 Google Scholar
  7. 7.
    Xiaoxi L, Haiyan W, Jingwei C, Jinghui Y, Ting H, Nan Z, Yong W (2012) Nonisothermal crystallization and multiple melting behaviors of beta-nucleated impact-resistant polypropylene copolymer. J Appl Polym Sci 126(3):1031–1043.  https://doi.org/10.1002/app.36633 CrossRefGoogle Scholar
  8. 8.
    Mani MR, Chellaswamy R, Marathe YN, Pillai VK (2016) New understanding on regulating the crystallization and morphology of the beta-polymorph of isotactic polypropylene based on carboxylate-Alumoxane nucleating agents. Macromolecules 49(6):2197–2205.  https://doi.org/10.1021/acs.macromol.5b02466 CrossRefGoogle Scholar
  9. 9.
    Wang L, Hikima Y, Ishihara S, Ohshima M (2017) Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 128:119–127.  https://doi.org/10.1016/j.polymer.2017.09.025 CrossRefGoogle Scholar
  10. 10.
    Cheng D, Feng J, Yi J (2012) Influence of nucleation on the brittle-ductile transition temperature of impact-resistant polypropylene copolymer: from the sight of phase morphology. J Appl Polym Sci 123(3):1784–1792.  https://doi.org/10.1002/app.34639 CrossRefGoogle Scholar
  11. 11.
    Liu Y-M, Tong Z-Z, Xu J-T, Fu Z-S, Fan Z-Q (2014) A highly efficient beta-nucleating agent for impact-resistant polypropylene copolymer. J Appl Polym Sci 131(18).  https://doi.org/10.1002/app.40753 Google Scholar
  12. 12.
    Dou G, Dou Q (2015) Crystallization kinetics, spherulitic morphology, mechanical properties and heat resistance of beta-nucleated impact-resistant propylene-ethylene copolymer. Thermochim Acta 614:21–32.  https://doi.org/10.1016/j.tca.2015.06.011 CrossRefGoogle Scholar
  13. 13.
    Qiu B, Chen F, Shangguan Y, Lin Y, Zheng Q, Wang X (2016) Toughening mechanism in impact polypropylene copolymer containing a beta-nucleating agent. RSC Adv 6(28):23117–23125.  https://doi.org/10.1039/c6ra01046f CrossRefGoogle Scholar
  14. 14.
    Lu Q, Dou Q (2008) β-Crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560.  https://doi.org/10.1007/s10965-008-9259-2 CrossRefGoogle Scholar
  15. 15.
    Ren X-Q, Zhang Y-F (2018) Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. J Therm Anal Calorim 137(2):563–573.  https://doi.org/10.1007/s10973-018-7958-4 CrossRefGoogle Scholar
  16. 16.
    Ren X-Q, Zhang Y-F, He J, Li Y (2018) Nucleation effect of adipic acid metal salts in isotactic polypropylene. J Therm Anal Calorim 135(6):3321–3328.  https://doi.org/10.1007/s10973-018-7515-1 CrossRefGoogle Scholar
  17. 17.
    Zhao S, Cai Z, Xin Z (2008) A highly active novel beta-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754.  https://doi.org/10.1016/j.polymer.2008.04.012 CrossRefGoogle Scholar
  18. 18.
    Zhao S, Gong H, Yu X, Xin Z, Sun S, Zhou S, Shi Y (2016) A highly active and selective beta-nucleating agent for isotactic polypropylene and crystallization behavior of beta-nucleated isotactic polypropylene under rapid cooling. J Appl Polym Sci 133(32).  https://doi.org/10.1002/app.43767
  19. 19.
    Qin W, Xin Z, Pan C, Sun S, Jiang X, Zhao S (2019) In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chem Eng J 358:1243–1252.  https://doi.org/10.1016/j.cej.2018.10.108 CrossRefGoogle Scholar
  20. 20.
    Zhang Y-F, Li D, Chen Q-J (2017) Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci 295(10):1973–1982.  https://doi.org/10.1007/s00396-017-4176-8 CrossRefGoogle Scholar
  21. 21.
    Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, Ye C (2017) Nucleation effects of zinc adipate as β-nucleating agent in ethylene-propylene block copolymerized polypropylene. J Polym Res 24(9).  https://doi.org/10.1007/s10965-017-1300-x
  22. 22.
    Zhao S, Qin W, Xin Z, Zhou S, Gong H, Ni Y, Zhang K (2018) In situ generation of a self-dispersed beta-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer 151:84–91.  https://doi.org/10.1016/j.polymer.2018.07.023 CrossRefGoogle Scholar
  23. 23.
    Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie 75(1):134–158.  https://doi.org/10.1002/macp.1964.020750113 CrossRefGoogle Scholar
  24. 24.
    Tjong SC, Shen JS, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36(1):100–105.  https://doi.org/10.1002/pen.10390 CrossRefGoogle Scholar
  25. 25.
    Yi X, Chen C, Zhong G-J, Xu L, Tang J-H, Ji X, Hsiao BS, Li Z-M (2011) Suppressing the skin–Core structure of injection-molded isotactic polypropylene via combination of an in situ Microfibrillar network and an interfacial Compatibilizer. J Phys Chem B 115(23):7497–7504.  https://doi.org/10.1021/jp1118162 CrossRefPubMedGoogle Scholar
  26. 26.
    Yu X, Wu H, Li J, Guo S, Qiu J (2009) Structure and property of injection-molded polypropylene along the flow direction. Polym Eng Sci 49(4):703–712.  https://doi.org/10.1002/pen.21302 CrossRefGoogle Scholar
  27. 27.
    Luo F, Wang K, Ning N, Geng C, Deng H, Chen F, Fu Q, Qian Y, Zheng D (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22(12):2044–2054.  https://doi.org/10.1002/pat.1718 CrossRefGoogle Scholar
  28. 28.
    Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27(10):2557–2579.  https://doi.org/10.1007/bf00540671 CrossRefGoogle Scholar
  29. 29.
    Yuan Q, Jiang W, An L (2004) Study of β–α recrystallization of the polypropylene. Colloid Polym Sci 282(11):1236–1241.  https://doi.org/10.1007/s00396-004-1063-x CrossRefGoogle Scholar
  30. 30.
    Shi Y, Shao L, Yang J, Huang T, Wang Y, Zhang N, Wang Y (2013) Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol 24(1):42–50.  https://doi.org/10.1002/pat.3047 CrossRefGoogle Scholar
  31. 31.
    Cai Y, Yan S, Yin J, Fan Y, Chen X (2011) Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N,N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121(3):1408–1416.  https://doi.org/10.1002/app.33633 CrossRefGoogle Scholar
  32. 32.
    George S, Varughese KT, Thomas S (2000) Thermal and crystallisation behaviour of isotactic polypropylene/nitrile rubber blends. Polymer 41(14):5485–5503.  https://doi.org/10.1016/S0032-3861(99)00719-3 CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations