Advertisement

Journal of Polymer Research

, 26:243 | Cite as

Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation

  • Lei Hou
  • Zhe WangEmail author
  • Jingmei Xu
  • Zhaoyu Chen
ORIGINAL PAPER
  • 41 Downloads

Abstract

In this study, a series of poly(arylene ether ketone) containing amino and fluorenyl groups (Am-PAFEK-X) were successfully prepared by the polycondensation, which was confirmed by analizing its chemical structure with the Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance. It was found that Am-PAFEK-X exhibited high thermal stability (Td5 > 172 °C) and glass transition temperature (Tg > 191 °C) as well as good mechanical properties, and its highest Young’s modulus and tensile strength are respectively 2299 MPa and 59 MPa. In addition, the O2, N2, CO2 and CH4 were applied to study the gas transmission properties of Am-PAFEK-X membranes to different gases, in which the Am-PAFEK-60% had the highest selectivity to CO2/N2 and CO2/CH4, respectively 31.13 and 33.36. As shown in the results, the selectivity of the membrane to CO2 increased with the increase of the large rigid fluorenyl groups, which indicated that the gas permeation results were closely related to the intermolecular interaction and the structure of the polymer chain.

Keywords

Membrane Poly (arylene ether ketone) Gas separation Amino groups Fluorenyl groups 

Notes

Acknowledgements

The authors are very grateful to the China Natural Science Foundation(grant no.s 51673030, 51603017 and 51603011). Jilin Provincial Science & Technology Department (grant no.s 20180101209JC, 20160520138JH, 20160519020JH) and ChangBai Mountain Scholars Program of Jilin Province for financial support for this work.

References

  1. 1.
    Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129CrossRefGoogle Scholar
  2. 2.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663CrossRefGoogle Scholar
  3. 3.
    Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5(6):7306–7322CrossRefGoogle Scholar
  4. 4.
    Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121CrossRefGoogle Scholar
  5. 5.
    Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M (2014) CO2-selective membranes for hydrogen production and CO2 capture–part I: membrane development. J Membr Sci 457:149–161CrossRefGoogle Scholar
  6. 6.
    Lin H, He Z, Sun Z, Kniep J, Ng A, Baker RW (2015) CO2-selective membranes for hydrogen production and CO2 capture–part II: techno-economic analysis. J Membr Sci 493:794–806CrossRefGoogle Scholar
  7. 7.
    Qu Z, Wu H, Zhou Y, Yang L, Wu X, Wu Y (2019) Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation. Chem Eng Sci 199:275–284CrossRefGoogle Scholar
  8. 8.
    Jiang X, Li S, Shao L (2017) Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ Sci 10(6):1339–1344CrossRefGoogle Scholar
  9. 9.
    Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761CrossRefGoogle Scholar
  10. 10.
    Wang Z, Wang D, Zhang S, Hu L, Jin J (2016) Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater 28(17):3399–3405CrossRefGoogle Scholar
  11. 11.
    Anjum MW, de Clippel F, Didden J, Khan AL, Couck S, Baron GV (2015) Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. J Membr Sci 495:121–129CrossRefGoogle Scholar
  12. 12.
    Kosinov N, Gascon J, Kapteijn F, Hensen EJ (2016) Recent developments in zeolite membranes for gas separation. J Membr Sci 499:65–79CrossRefGoogle Scholar
  13. 13.
    Ibrahim AF, Lin Y (2018) Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci 190:312–319CrossRefGoogle Scholar
  14. 14.
    Zhang N, Wu H, Li F, Dong S, Yang L, Ren Y (2018) Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. J Membr Sci 567:272–280CrossRefGoogle Scholar
  15. 15.
    Qiao Z, Zhao S, Sheng M, Wang J, Wang S, Wang Z (2019) Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater 18(2):163–168CrossRefGoogle Scholar
  16. 16.
    Wu X, Liu W, Wu H, Zong X, Yang L, Wu Y (2018) Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J Membr Sci 548:309–318CrossRefGoogle Scholar
  17. 17.
    Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I (2016) Pure-and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Membr Sci 505:100–107CrossRefGoogle Scholar
  18. 18.
    Freeman B, Yampolskii Y (2006) Pinnau I. John Wiley & Sons, Materials science of membranes for gas and vapor separationGoogle Scholar
  19. 19.
    Robeson LM (2006) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185CrossRefGoogle Scholar
  20. 20.
    Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400CrossRefGoogle Scholar
  21. 21.
    Asghar H, Ilyas A, Tahir Z, Li X, Khan AL (2018) Fluorinated and sulfonated poly (ether ether ketone) and Matrimid blend membranes for CO2 separation. Sep Purif Technol 203:233–241CrossRefGoogle Scholar
  22. 22.
    Li HQ, Liu XJ, Xu J, Xu D, Ni H, Wang S (2016) Enhanced proton conductivity of sulfonated poly (arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci 509:173–181CrossRefGoogle Scholar
  23. 23.
    González-Díaz MO, Pérez-Francisco JM, Herrera-Kao W, González-Díaz A, Montes-Luna A, Aguilar-Vega M (2017) Novel copolyaramides with bulky flexible groups for pure and mixed-gas separation. Sep Purif Technol 189:366–374CrossRefGoogle Scholar
  24. 24.
    Zhang C, Li P, Cao B (2017) Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J Membr Sci 528:206–216CrossRefGoogle Scholar
  25. 25.
    Zhang C, Cao B, Li P (2018) Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J Membr Sci 546:90–99CrossRefGoogle Scholar
  26. 26.
    Lee H-J, Suda H, Haraya K (2008) Characterization of the post-oxidized carbon membranes derived from poly (2, 4-dimethyl-1, 4-phenylene oxide) and their gas permeation properties. Sep Purif Technol 59(2):190–196CrossRefGoogle Scholar
  27. 27.
    Wu D, Han Y, Salim W, Chen KK, Li J, Ho WW (2018) Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. J Membr Sci 565:439–449CrossRefGoogle Scholar
  28. 28.
    Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45(8):3298–3311CrossRefGoogle Scholar
  29. 29.
    Yu Y, Pan W, Guo X, Gao L, Gu Y, Liu Y (2017) A poly (arylene ether sulfone) hybrid membrane using titanium dioxide nanoparticles as the filler: preparation, characterization and gas separation study. High Performance Polymers 29(1):26–35CrossRefGoogle Scholar
  30. 30.
    Rao PS, Wey M-Y, Tseng H-H, Kumar IA, Weng T-H (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113(1–3):499–510CrossRefGoogle Scholar
  31. 31.
    Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J (2016) Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Membr Sci 520:860–868CrossRefGoogle Scholar
  32. 32.
    Zhu T, Yang X, He X, Zheng Y, Luo J (2018) Aromatic polyamides and copolyamides containing fluorene group: synthesis, thermal stability, and gas transport properties. High Performance Polymers 30(7):821–832CrossRefGoogle Scholar
  33. 33.
    Bisoi S, Bandyopadhyay P, Bera D (2015) Banerjee S. effect of bulky groups on gas transport properties of semifluorinated poly (ether amide) containing pyridine moiety. Eur Polym J 66:419–428CrossRefGoogle Scholar
  34. 34.
    Yu Y, Wang Y, Li T, Liang W, Li C, Niu W (2017) Synthesis, properties and gas separation performance of poly (arylene ether sulfone) containing imide pendant groups. RSC Adv 7(67):42468–42475CrossRefGoogle Scholar
  35. 35.
    Cheng H, Xu J, Ma L, Xu L, Liu B, Wang Z (2014) Preparation and characterization of sulfonated poly (arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes. J Power Sources 260:307–316CrossRefGoogle Scholar
  36. 36.
    Xu L, Han H, Liu M, Xu J, Ni H, Zhang H (2015) Phosphotungstic acid embedded sulfonated poly (arylene ether ketone sulfone) copolymers with amino groups for proton exchange membranes. RSC Adv 5(101):83320–83330CrossRefGoogle Scholar
  37. 37.
    Li J, Wang S, Liu F, Tian X, Wang X, Chen H (2018) HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int J Hydrog Energy 43(33):16248–16257CrossRefGoogle Scholar
  38. 38.
    Elton L (1977) Rudolf peierls and theoretical physics: edited by IJR Aitchison and JE Paton, PergamonCrossRefGoogle Scholar
  39. 39.
    Zhao S, Liao J, Li D, Wang X, Li N (2018) Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's base polymer for gas separation membranes. J Membr Sci 566:77–86CrossRefGoogle Scholar
  40. 40.
    Chung TS, Lin WH, Vora RH (2001) Gas transport properties of 6FDA-durene/1, 3-phenylenediamine (mPDA) copolyimides. J Appl Polym Sci 81(14):3552–3564CrossRefGoogle Scholar
  41. 41.
    Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447CrossRefGoogle Scholar
  42. 42.
    Rada ZH, Abid HR, Shang J, He Y, Webley P, Liu S (2015) Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel 160:318–327CrossRefGoogle Scholar
  43. 43.
    Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membr Sci 474:20–31CrossRefGoogle Scholar
  44. 44.
    Mal K, Naskar S, Sen SK, Natarajan R, Das I (2016) Tandem Chemoselective 1, 2−/1, 4-migration of the Thio Group in Keto Thioesters: an efficient approach to substituted Butenolides. Adv Synth Catal 358(20):3212–3230CrossRefGoogle Scholar
  45. 45.
    Bunz UH, Enkelmann V, Kloppenburg L, Jones D, Shimizu KD, Claridge JB (1999) Solid-state structures of phenyleneethynylenes: comparison of monomers and polymers. Chem Mater 11(6):1416–1424CrossRefGoogle Scholar
  46. 46.
    Thomas OD, Soo KJ, Peckham TJ, Kulkarni MP, Holdcroft S (2012) A stable hydroxide-conducting polymer. J Am Chem Soc 134(26):10753–10756CrossRefGoogle Scholar
  47. 47.
    Lin X, Varcoe JR, Poynton SD, Liang X, Ong AL, Ran J (2013) Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells. J Mater Chem A 1(24):7262–7269CrossRefGoogle Scholar
  48. 48.
    Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R (2015) Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 7(9):5528–5537CrossRefGoogle Scholar
  49. 49.
    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49CrossRefGoogle Scholar
  50. 50.
    Maya E, Garcia-Yoldi I, Lozano A, de La Campa J, de Abajo J (2011) Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules 44(8):2780–2790CrossRefGoogle Scholar
  51. 51.
    Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S (2016) Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 138(24):7673–7680CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.College of Chemical Engineering Changchun University of TechnologyChangchunChina
  2. 2.Advanced Institute of Materials Science Changchun University of TechnologyChangchunChina

Personalised recommendations