Journal of Polymer Research

, 26:242 | Cite as

Structure effect on mechanical and thermal properties in aromatic copolyamides with phenyl substituents

  • R. J. Palí-CasanovaEmail author
  • M. I. Loría-Bastarrachea
  • M. J. Aguilar-Vega
  • J. C. Zavala-Loría
  • L. A. Dzul-López
  • M. A. Yam-CervantesEmail author


Six aromatic copolyamides contanining phenyl groups were synthesized and characterized. The concentrations of the para-linked phenyl groups and meta-linked phenyl groups were varied systematically on the copolymers general structure to obtain a set of random copolyamides. Effect of copolymerization on glass transition temperature (Tg), tensile modulus (E), Tensile strength (σ) were measured. Changes in density were determined to estimate the effect on Fractional Free Volume (FFV). Results indicate that the substitution of para-linked phenyl group by meta-linked phenyl group causes an increase in tensile modulus E and tensile strength a decrease in Tg. The observed results are attributed to the asymmetric position of the linkages in the TERE and ISO isomers, because symmetric linkages, such as TERE, induces a higher packing of the polyamide chains while the asymmetry of ISO isomer inhibits packing causing an expansion in the FFV.


Aromatic polyamides Polycondensation Mechanical and thermal properties Fractional free volume 



This research was performed under UNACAR grant No. DIP/11/2003.


  1. 1.
    Varma IK, Kumar R, Bhattacharyya AB (1990) Effect of structure on properties of aromatic polyamides. J Appl Polym Sci 40:531–542CrossRefGoogle Scholar
  2. 2.
    Hu Z, Li S, Zhang C (2007) Synthesis and properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106:2494–2501CrossRefGoogle Scholar
  3. 3.
    Hsiao S-H, Yang C-P, Wang S-W, Chuang M-H (1999) Synthesis and properties of aromatic polyamides containing the cyclohexane structure. J Polym Sci A Polym Chem 37:3575–3583CrossRefGoogle Scholar
  4. 4.
    Gupta KC (1997) Synthesis and evaluation of aromatic polyamide membranes for desalination in reverse-osmosis technique. J Appl Polym Sci 66:643–653CrossRefGoogle Scholar
  5. 5.
    Ge Z, Yang S, Tao Z, Liu J, Fan L (2004) Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer 45:3627–3635CrossRefGoogle Scholar
  6. 6.
    Pal RR, Patil PS, Salunkhea MM, Maldar NN, Wadgaonkar PP (2009) Synthesis, characterization and constitutional isomerism study of new aromatic polyamides containing pendant groups based on asymmetrically substituted meta-phenylene diamines. Eur Polym J 45:953–959CrossRefGoogle Scholar
  7. 7.
    Trigo M, García JM, Reglero JA, García FC (2018) Aromatic polyamides. Encyclopedia of polymer science and technology. John Wiley & SonsGoogle Scholar
  8. 8.
    Palí Casanova R, Córdova Quiroz AV, Loría Za, JC A-VM, Loría-Bastarrachea M, Angulo JL, Vázquez H (2009) Structural rigidity of aromatic polyamides with bulky lateral substitutions. High Perform Polym 21:315–339CrossRefGoogle Scholar
  9. 9.
    González MO, Sulub R, Herrera W, Vázquez-Torres H, Zolotukhin MG, Aguilar-Vega M (2018) Enhanced gas transport performance of polyamide membranes by Postpolymerization modification. Ind Eng Chem Res 96:8989–8996CrossRefGoogle Scholar
  10. 10.
    Palí R, Loría Bastarrachea M, Aguilar Vega M, Angulo JL And Vazquez H; (2002). Síntesis and characterization of aromatic polyamides obtained from 4-4′-(9-fluorenilidene)diamine, 4-4′-(hexafluoro-isopropolylidene)dianilineand 4-4′--diamine-benzophenone, High perform Polym, 14: 77–91CrossRefGoogle Scholar
  11. 11.
    López-Nava R, Vázquez-Moreno FS, Palí-Casanova R, Aguilar-Vega M (2002) Gas permeability coefficients of isomeric aromatic polyamides obtained from 4,4′-(9-fluorenylidene) diamine and aromatic diacid chlorides. Polym Bull 49:165–172CrossRefGoogle Scholar
  12. 12.
    Ghosal K, Freeman BD, Chern RT, Alvarez JC, de la Campa JG, Lozano AE, de Abajo J (1995) Gas separation properties of aromatic polyamides with sulfone groups. Polymer 36:793–800CrossRefGoogle Scholar
  13. 13.
    Plaza-Lozano D, Comesaña-Gándara B, De la Viuda M, Geug Seong J, Palacio L, Prádanos P, De la Campa JG, Cuadrado P, Moo Lee Y, Hernández A, Alvarez C, Lozano AE (2015) New aromatic polyamides and polyimides having an adamantane bulky group. Materials Today Communications 5:23–31Google Scholar
  14. 14.
    Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Chern YT, Wang WL (1998) High α transitions of new polyamides based on diamantane. J Polym Sci A Polym Chem 36:1257–1263CrossRefGoogle Scholar
  16. 16.
    Bisoi S, Mandal AK, Singh A, Padmanabhan V, Banerjee S (2017) Soluble, optically transparent polyamides with a phosphaphenanthrene skeleton: synthesis, characterization, gas permeation and molecular dynamics simulations. Polym Chem 8(29):4220–4232CrossRefGoogle Scholar
  17. 17.
    Hsiao SH, Chu KY (1997) Synthesis and properties of Ortho-linked aromatic polyamides based on 4,4?-(2,3-naphthalenedioxy) dibenzoic acid. J Polym Sci A Polym Chem 35:3385–3391CrossRefGoogle Scholar
  18. 18.
    Chern YT, Wang WL (1996) Synthesis and characterization of tough polycyclic polyamides containing 4,9-Diamantyl moieties in the main chain. J Polym Sci A Polym Chem 34:1501–1509CrossRefGoogle Scholar
  19. 19.
    American Society for Testing and Materials. Standard test method for tensile properties of thin plastic Sheeting1. Designation:D 882 02. Pennsylvania, PA: ASTM, p. 10Google Scholar
  20. 20.
    Yang C-P, Chen W-T (1993) Synthesis and properties of novel aromatic polyamides derived from 1,5-bis(4-aminophenoxi)naphthalene and aromatic dicarboxylic acids. Journal of Polymers Science: Part A: Polymer Chemistry 31:1571–1578CrossRefGoogle Scholar
  21. 21.
    Carrera-Figueiras C, Aguilar-Vega M (2005) Gas permeability and selectivity of hexafluoroisopropylidene aromatic isophthalic copolyamides. Journal of Polymer Science: Part B 43:2625–2638CrossRefGoogle Scholar
  22. 22.
    Yang CP, Cherng JJ (1995) Synthesis and properties of aromatic polyamides derived from 1,2-bis(4-aminophenoxy)benzene and aromatic dicarboxylic acids. J Polym Sci A Polym Chem 33:2209–2220Google Scholar
  23. 23.
    Bhole YS, Kharul UK (2003) Effect of fluorine-bisphenol ring substitucion and bridge rigidity on physical and gas permeation properties of resulting polyarilates. Polym Int 52:1474–1479Google Scholar
  24. 24.
    Zilberman M, Siegmann A, Narkist M (1995) The glass transition temperature of 6/6.9 random copolyamides. Polymer 36:5065–5067Google Scholar
  25. 25.
    Zhu T, Yang X, He X, Zheng Y, Luo J (2017) Aromatic polyamides and copolyamides containing fluorene group. High Performance Polymers 30:821–832CrossRefGoogle Scholar
  26. 26.
    Pessan IA, Koros WJ (1993) Isomer effects on transport properties of polyesters based on bisphenol-a. Journal of Polymer Science: Part B 31:1245–1252CrossRefGoogle Scholar
  27. 27.
    Pérez-Francisco JM, Santiago-García JL, Loría-Bastarrachea MI, Aguilar-Vega M (2017) Evaluation of gas transport properties of highly rigid aromatic PIDPPD-IMM/PBI blends. Ind Eng Chem Res 56:9355–9366CrossRefGoogle Scholar
  28. 28.
    Huang F, Cornelius CJ (2017) Polyimide-SiO2-TiO2 nanocomposite structural study probing free volume, physical properties, and gas transport. J Membr Sci 542:110–122CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • R. J. Palí-Casanova
    • 1
    Email author
  • M. I. Loría-Bastarrachea
    • 2
  • M. J. Aguilar-Vega
    • 2
  • J. C. Zavala-Loría
    • 1
  • L. A. Dzul-López
    • 1
  • M. A. Yam-Cervantes
    • 1
    Email author
  1. 1.Universidad Internacional IberoamericanaCampecheMexico
  2. 2.Unidad de Materiales, Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations