Advertisement

Biodegradable dendrimer functionalized carbon nanotube-hybrids for biomedical applications

  • Sivaranjani ArumugamEmail author
  • Padmapriya Ramamoorthy
  • Lakshmi Devi Chakkarapani
ORIGINAL PAPER
  • 37 Downloads

Abstract

In the present study, biodegradable poly(amidoamine) dendrimers (PAMAM G1/G2/G3) was covalently functionalized with carbon nanotubes (CNTs) and nanostructured hydroxyapatite was immobilized onto CNTs-PAMAM matrix through coordination bond between the –NH2 groups of dendrimer and Ca2+ of hydroxyapatite. The structural and morphological behaviors of the nanohybrids were established through spectroscopic and microscopic analyses. In vitro cytotoxicity and cell proliferation was assessed through osteoblast-like MG 63 cell line using 3–4, 5-dimethylthiazole-2-yl, 2,5-diphenyl tetrazolium bromide assay for 3 days. The more abundant of –NH2 group exist in PAMAM(G3) dendrimer attracts more number of HAp molecules onto their surface which exhibits enhanced activity in cell proliferations even at higher concentrations.

Keywords

Carbon nanotubes Dendrimer Hydroxyapatite Nanohybrids Bone tissue engineering 

Notes

Acknowledgments

Authors acknowledge Prof.E.Murugan for his valuable suggestions to carry out this work and the National Centre for Nanoscience and Nanotechnology (NCNSNT), University of Madras for providing financial support & instrumentation facilities.

References

  1. 1.
    De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials 5:197–211CrossRefGoogle Scholar
  2. 2.
    Bapi G, Muktika T, Prashant K, Arun KI, Kiran K, Rakesh KT (2017) The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today 22:652–664CrossRefGoogle Scholar
  3. 3.
    Merve H, Mehmet S (2017) Dendrimer functional hydroxyapatite nanoparticles generated by functionalization with siloxane-cored PAMAM dendrons. J Colloid Interface Sci 500:105–112CrossRefGoogle Scholar
  4. 4.
    Molly MS (2008) Biomaterials for bone tissue engineering. Materialstoday 11:18–25Google Scholar
  5. 5.
    Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu B, Li Q, He R, Hu G (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 20:125101CrossRefGoogle Scholar
  6. 6.
    Viswanathan K, Periyannan K, Kasi G, Ayyakannu A, Marimuthu G, Naiyf SA, Jamal MK, Mohammed NA, Giovanni B (2018) Biocompatible properties of nano-drug carriers using TiO2-au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater Sci Eng C 90:589–601CrossRefGoogle Scholar
  7. 7.
    Bapi G, Hira C, Manisha P, Prashant K, Muhammad MA, Rakesh KT, Zahid H (2018) Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: a review of recent developments and therapeutic implications. Biomed Pharmacother 104:496–508CrossRefGoogle Scholar
  8. 8.
    Haniuh H, Saito N, Matsuda Y, Tsukahara T, Usui Y, Narita N, Hara K, Aoki K, Shimizu M, Ogihara N, Takanashi S, Okamoto M, Kobayashi S, Ishigaki N, Nakamura K, Kato H (2012) Basic potential of carbon nanotubes in tissue engineering applications. J Nanomater 2012:1–10Google Scholar
  9. 9.
    Massimo B, Lutz T, Huong H, Edvard M, Nunzio B, Marcia ID, Stefano B, Tomas M (2005) Covalent decoration of multi-walled carbon nanotubeswith silica nanoparticles. Chem Commun 14:758–760Google Scholar
  10. 10.
    Pan B, Cui D, Gao F, He R (2006) Growth of multi-amine terminated poly(amidoamine) dendrimers on the surface of carbon nanotubes. Nanotechnology 17:2483–2489CrossRefGoogle Scholar
  11. 11.
    Amirian M, Chakoli AN, Sui J, Cai W (2012) Enhanced shape memory effect of poly(L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(9777).  https://doi.org/10.1007/s10965-011-9777-1
  12. 12.
    Zhang HL, Wang J, Yu N, Liu JS (2014) Electrospun PLGA/multi-walled carbon nanotubes/wool keratin composite membranes: morphological, mechanical, and thermal properties, and their bioactivities in vitro. J Polym Res 21(329).  https://doi.org/10.1007/s10965-013-0329-8
  13. 13.
    El Sayed AM, Mohamad ADM (2018) Synthesis, structural, thermal, optical and dielectric properties of chitosan biopolymer; influence of PVP and α-Fe2O3 Nanorods. J Polym Res 25(175).  https://doi.org/10.1007/s10965-018-1571-x
  14. 14.
    Pan B, Cui D, Sheng Y, Ozkan C, Gao F, Qing HR (2007) Li,1 Ping Xu, Huang T. Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System Cancer Res 67:8156–8163PubMedGoogle Scholar
  15. 15.
    Prashant K, Avinash G, Arun KI, Keerti J, Manish KC, Umesh G (2018) Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today 23:2300–314
  16. 16.
    Egambaram M, Sivaranjani A, Praba P (2016) New nanohybrids from poly(propylene imine) dendrimer stabilized silver nanoparticles on multiwalled carbon nanotubes for effective catalytic and antimicrobial applications. INT J POLYM MATER PO 65:111–124CrossRefGoogle Scholar
  17. 17.
    Sivaranjani A (2017) New multi-walled carbon nanotubes functionalized with dendrimer stabilized palladium nanoparticles catalyst for C-C cross coupling reactions. Nanomater Mol Nanotechnol 6:1–10.  https://doi.org/10.4172/2324-8777.1000228 CrossRefGoogle Scholar
  18. 18.
    Eagambaram M, Sivaranjani A (2014) New dendrimer functionalized multi-walled carbon nanotube hybrids for bone tissue engineering. RSC Adv 4:35428–35441CrossRefGoogle Scholar
  19. 19.
    Sivaranjani A, Padmapriya R, Lakshmi Devi C (2019) Synthesis and characterizations of biocompatible polymers and carbon nanotubes-based hybrids for biomedical applications. Int J Polym Mater Polym Biomater:1–12.  https://doi.org/10.1080/00914037.2019.1616200
  20. 20.
    Preeti MB, Singh K (2018) In-situ fabrication of rod shaped nano-hydroxyapatite using microwave assisted semi-interpenetrating network as a template-morphology controlled approach. Mater Chem Phys 208:49–60CrossRefGoogle Scholar
  21. 21.
    Markovic M, Fowler B, Tung M (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol 109:553–568CrossRefGoogle Scholar
  22. 22.
    Thein-Han WW, Misra RDK (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefGoogle Scholar
  23. 23.
    Rao DV, Gigante GE, Cesareo R, Brunetti A, Schiavon N, Akatsuka T, Yuasa T, Takeda T (2017) Synchrotron-based XRD from rat bone of different age groups. Mater Sci Eng C 74:207–218CrossRefGoogle Scholar
  24. 24.
    Kunio E (2003) Dendrimers for nanoparticle synthesis and dispersion stabilization. Top Curr Chem 227:31–52CrossRefGoogle Scholar
  25. 25.
    Wenying L, Yi-Chun Y, Justin L (2011) Enhancing the stiffness of electrospun nanofiber scaffolds with a controlled surface coating and mineralization. Langmuir 27:9088–9093CrossRefGoogle Scholar
  26. 26.
    Dahle S, Voigts F, Maus-Friedrichs W (2012) In situ preparation of calcium carbonate films. Thin Solid Films 520:1842–1846CrossRefGoogle Scholar
  27. 27.
    Cai YL, Zhang S, Zeng XT (2011) Effect of fluorine incorporation on long-term stability of magnesium-containing hydroxyapatite coatings. J Mater Sci Mater Med 22:1633–1638CrossRefGoogle Scholar
  28. 28.
    Dias AG, Skakle JMS, Gibson IR (2015) In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: high temperature - XRD studies. J Non-Cryst Solids 351:810–817CrossRefGoogle Scholar
  29. 29.
    Zengjie F, Jinqing W, Zhaofeng W (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416CrossRefGoogle Scholar
  30. 30.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  31. 31.
    Hossaing SF, Hubbell JA (1994) Molecular weight dependence of calcification of polyethylene glycol hydrogels. Biomaterials 15:921–925CrossRefGoogle Scholar
  32. 32.
    Kunneng L, He Y, Jianshu L, Jiaojiao Y, Xin Z, Libang H, Lei C, Yuan G, Xin X, Xuedong Z, Jiyao L (2015) Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer. Macromol.Mater.Eng 300:107–117CrossRefGoogle Scholar
  33. 33.
    Tang RK, Wang LJ, Orme CA, Bonstein T, Bush PJ, Nancollas GH (2004) Dissolution at the nanoscale: self-preservation of biominerals. Angew Chem Int Ed 43:2697–2701CrossRefGoogle Scholar
  34. 34.
    Yurong C, Yukan L, Weiqi Y, Qinghong H, Jinhui T, Ming Z, Zhongli S, Ruikang T (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17:3780–3787CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of ChemistryBharath Institute of Higher Education and ResearchChennaiIndia
  2. 2.Department of Pharmacology, JIPMERPuducherryIndia
  3. 3.Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de LausanneSionSwitzerland

Personalised recommendations