Advertisement

Synthesis and characterization of graphene oxide-molecularly imprinted polymer for Neopterin adsorption study

  • Wai Chat Khoo
  • Sazlinda KamaruzamanEmail author
  • Hong Ngee Lim
  • Siti Nurul Ain Md. Jamil
  • Noorfatimah Yahaya
ORIGINAL PAPER
  • 22 Downloads

Abstract

Neopterin (NEO) is a useful biomarker for detection of malignant diseases. However, adsorption study using graphene oxide-molecularly imprinted polymer (GO-MIP) material has been lacking. The aim of this research was to synthesize and characterize GO-MIP for use in NEO adsorption study. GO-MIP with NEO as the template was synthesized via free radical polymerization method, with methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, ammonium persulfate (APS) as the initiator, and 8/2 v/v ratio of dimethylsulfoxide/acetonitrile (DMSO/ACN) solution as porogen solvent. The formation of GO-MIP hybrid with NEO binding sites was verified via Fourier transform infrared spectroscopy (FTIR), CHNS analysis, thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). GO-MIP adsorbed twice the amount of NEO compared to its non-imprinted counterpart, and showed good NEO selectivity when under the effect of analog compound 6-biopterin (BIO). The adsorption mechanism and kinetics were best described using Freundlich isotherm and Lagergren pseudo-second-order, respectively. The adsorption capacity at equilibrium was found to be 0.4749 mg/g with the adsorption parameters as described (10 mg GO-MIP, 1 mL NEO 10 ppm).

Keywords

Neopterin Graphene oxide Molecularly imprinted polymer Adsorption 

Notes

Acknowledgements

This work was supported by the Research Management Centre of Universiti Putra Malaysia (9546800) and The Ministry of Higher Education of Malaysia (5524938).

References

  1. 1.
    Abdel A, Adawy Z, Sayed M (2016) Role of neopterin among COPD patients. Egypt. J. Chest Dis. Tuberc. 65:23–27CrossRefGoogle Scholar
  2. 2.
    Anene A, Hosni K, Chevalier Y, Kalfat R, Hbaieb S (2016) Molecularly imprinted polymer for extraction of patulin in apple juice samples. Food Control. 70:90–95CrossRefGoogle Scholar
  3. 3.
    Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromol. Chemie. 182:687–692CrossRefGoogle Scholar
  4. 4.
    Carey BS, Jain R, Adams CL, Wong KY, Shaw S, Tse WY, Kaminski ER (2013) Serum neopterin as an indicator of increased risk of renal allograft rejection. Transpl. Immunol. 28:81–85CrossRefGoogle Scholar
  5. 5.
    Cesur S, Aslan T, Hoca NT, Çimen F, Tarhan G, Çifçi A, Ceyhan I, Şipit T (2014) Clinical importance of serum neopterin level in patients with pulmonary tuberculosis. Int. J. Mycobacteriology. 3:5–8CrossRefGoogle Scholar
  6. 6.
    Cui P, Lee J, Hwang E, Lee H (2011) One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47:12370CrossRefGoogle Scholar
  7. 7.
    Duan F, Chen C, Wang G, Yang Y, Liu X, Qin Y (2014) Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer. RSC Adv.Google Scholar
  8. 8.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156Google Scholar
  9. 9.
    Hamerlinck FFV (1999) Neopterin: a review. Exp. Dermatol. 8:167–176CrossRefGoogle Scholar
  10. 10.
    Haupt K, Linares AV, Bompart M, Tse B (2013) Molecularly imprinted polymers. TripleC. 11:13–35Google Scholar
  11. 11.
    Hausen A, Fuchs D, Grünewald K, Huber H, König K, Wechter H (1981) Urinary neopterine as marker for haematological neoplasias. Clin. Chim. Acta. 117:297–305CrossRefGoogle Scholar
  12. 12.
    Hemmati K, Sahraei R, Ghaemy M (2016) Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer (Guildf). 101:257–268CrossRefGoogle Scholar
  13. 13.
    Hopkins FG (1889) Note on a yellow pigment in butterflies. Nature. 40:335CrossRefGoogle Scholar
  14. 14.
    Hu S-G, Li L, He X-W (2005) Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers. J. Chromatogr. A. 1062:31–37CrossRefGoogle Scholar
  15. 15.
    Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma 160:310–316Google Scholar
  16. 16.
    C. Huber, D. Fuchs, A. Hausen, R. Margreiter, G. Reibnegger, M. Spielberger, H. Wachter, Pteridines as a new marker to detect human T cells activated by allogeneic or modified self major histocompatibility complex (MHC) determinants, 130 (1983) 1047–1050.Google Scholar
  17. 17.
    Khan S, Bhatia T, Trivedi P, Satyanarayana GNV, Mandrah K, Saxena PN, Mudiam MKR, Roy SK (2016) Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples. Food Chem. 199:870–875CrossRefGoogle Scholar
  18. 18.
    S. Khan, S. Hussain, A. Wong, M.V. Foguel, L. Moreira Gonçalves, M.I. Pividori Gurgo, M. del P. Taboada Sotomayor, Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React. Funct. Polym. (2017).Google Scholar
  19. 19.
    C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-.). (2008).Google Scholar
  20. 20.
    Lee S, Doong R (2012) Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. J. Polym. Res. 19:9939CrossRefGoogle Scholar
  21. 21.
    Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon N. Y. 49:4724–4730CrossRefGoogle Scholar
  22. 22.
    Y. Li, X. Li, C. Dong, J. Qi, X. Han, A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon N. Y. (2010).Google Scholar
  23. 23.
    Lyu Y, Jiang X, Dai W (2015) The roles of a novel inflammatory neopterin in subjects with coronary atherosclerotic heart disease. Int. Immunopharmacol. 24:169–172CrossRefGoogle Scholar
  24. 24.
    Mehmet Agilli HYTCISMOIAFNAYGKECEOA (2012) Comparison of two different HPLC methods and elisa method for measurement of serum neopterin. J. Investig. Biochem. 1:43–47CrossRefGoogle Scholar
  25. 25.
    Qiu H, Luo C, Sun M, Lu F, Fan L, Li X (2012) A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers. Carbon N. Y.Google Scholar
  26. 26.
    Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, Al-Lohedan HA (2018) Iminodiacetic acid modified kenaf fiber for waste water treatment. Int. J. Biol. Macromol. 112:754–760CrossRefGoogle Scholar
  27. 27.
    Schild HG (1993) Thermal Degradation of Poly (methacrylic acid): Further Studies Applying TGA/ FTlR. J. Polym. Sci. Part A Polym. Chem. 31:2403–2405CrossRefGoogle Scholar
  28. 28.
    Schniepp HC, Li J, Mcallister MJ, Sai H, Herrera-alonso M, Adamson DH, Prud RK, Car R, a Saville D (2006) I. a Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. ACS Publ. 2:8535–8539Google Scholar
  29. 29.
    Sharma PS, Wojnarowicz A, Sosnowska M, Benincori T, Noworyta K, D’Souza F, Kutner W (2016) Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens. Bioelectron. 77:565–572CrossRefGoogle Scholar
  30. 30.
    Del Sole R, Scardino A, Lazzoi MR, Mergola L, Scorrano S, Vasapollo G (2013) A molecularly imprinted polymer for the determination of neopterin. Microchim. Acta. 180:1401–1409CrossRefGoogle Scholar
  31. 31.
    Song X, Zhou T, Liu Q, Zhang M, Meng C, Li J, He L (2016) Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography–tandem mass spectrometry. Food Chem. 208:169–176CrossRefGoogle Scholar
  32. 32.
    Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug Deliv. Rev. 57:1779–1794CrossRefGoogle Scholar
  33. 33.
    Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G (2010) Neopterin, a prognostic marker in human malignancies. Cancer Lett. 287:13–22CrossRefGoogle Scholar
  34. 34.
    Sun S, Zhang M, Li Y, He X (2013) A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin. Sensors.Google Scholar
  35. 35.
    Wachter H, Hausen A, Grassmayr K (1979) Erhöhte Ausscheidung von Neopterin im Harn von Patienten mit malignen Tumoren und mit Viruserkrankungen. Hoppe Seylers Z Physiol Chem. 360:1957–1960PubMedGoogle Scholar
  36. 36.
    Wang Z, Qiu T, Guo L, Ye J, He L, Li X (2017) The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water. React. Funct. Polym. 116:69–76CrossRefGoogle Scholar
  37. 37.
    Wirleitner B, Schroecksnadel K, Winkler C, Fuchs D (2005) Neopterin in HIV-1 infection. Mol. Immunol. 42:183–194CrossRefGoogle Scholar
  38. 38.
    Wulff G, Knorr K (2001) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation. 10:257–276CrossRefGoogle Scholar
  39. 39.
    Xu L, Xu Z (2012) Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J. Polym. Res. 19:9942CrossRefGoogle Scholar
  40. 40.
    Zeng H, Wang Y, Liu X, Kong J, Nie C (2012) Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta. 93:172–181CrossRefGoogle Scholar
  41. 41.
    Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO 2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens. Bioelectron.Google Scholar
  42. 42.
    Zhu Y, Murali S, Cai W, Li X, Suk J (2010) Graphene and graphene oxide: synthesis, properties, and applications. Advanced.Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI)Universiti Sains MalaysiaBertam Kepala BatasMalaysia

Personalised recommendations