Synthesized and mesomorphic properties of cholesterol end-capped poly(ε-caprolactone) polymers

  • Erdinc DoganciEmail author
  • Derya DavarciEmail author


Cholesterol end-capped linear and star-shaped poly(ε-caprolactone) (PCL) polymers were prepared by a combination of copper catalyzed azide–alkyne cycloaddition (CUAAC, click chemistry) and ring-opening polymerization (ROP) techniques. The chemical structures of these polymers were determinated by Fourier Transform Infrared (FTIR), 1H NMR, 31P NMR, and Gel Permeation Chromatography (GPC). Mesogenic properties of these polymers were examined by wide and small-angle X-ray scattering (WAXS and SAXS), differential scanning calorimetry (DSC) and polarising optical microscopy (POM). The results revealed that PCLs have focal conic textures of the smectic liquid crystals, encouraging the mesomorphism. The mesomorphic temperature ranges became widen with the increasing amount of cholesterol moiety in the polymers.

Graphical abstract

Liquid Crystal Based On Cholesteryl End-Capped Star-Shaped PCL Polymers.


Cholesterol Liquid crystal Poly(ε-caprolactone) Star-shaped polymers Ring-opening polymerization CUAAC click chemistry 



This work has been supported by the Scientific Research Projects Unit of Kocaeli University (KOU-2019-004HD).


  1. 1.
    Chen HP, Katsis D, Mastrangelo JC, Chen SH, Jacobs SD, Hood PJ (2000) Glassy Liquid-Crystal Films with Opposite Chirality as High-Performance Optical Notch Filters and Reflectors. Adv Mater 12:1283–1286CrossRefGoogle Scholar
  2. 2.
    van Delden RA, Feringa BL (2001) Color Indicators of Molecular Chirality Based on Doped Liquid Crystals. Angew Chem Int Ed 40:3198–3200CrossRefGoogle Scholar
  3. 3.
    Shibaev V, Bobrovsky A, Boiko N (2003) Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci 28:729–836CrossRefGoogle Scholar
  4. 4.
    van de Craats AM, Stutzmann N, Bunk O, Nielsen MM, Watson M, Müllen K, Chanzy HD, Sirringhaus H, Friend RH (2003) Meso-Epitaxial Solution-Growth of Self-Organizing Discotic Liquid-Crystalline Semiconductors. Adv Mater 15:495–499CrossRefGoogle Scholar
  5. 5.
    Goto H, Dai X, Narihiro H, Akagi K (2004) Synthesis of Polythiophene Derivatives Bearing Ferroelectric Liquid Crystalline Substituents. Macromolecules 37:2353–2362CrossRefGoogle Scholar
  6. 6.
    Karim MR, Yahya R, Sheikh MRK, Salleh NM, Hassan A, Mahmud HNM (2014). J Polym Res 21(487):1–9Google Scholar
  7. 7.
    Choi SS, Morris SM, Huck WTS, Coles HJ (2009) The switching properties of chiral nematic liquid crystals using electrically commanded surfaces. Soft Matter 5:354–362CrossRefGoogle Scholar
  8. 8.
    Choi SS, Morris SM, Huck WTS, Coles HJ (2009) Electrically Tuneable Liquid Crystal Photonic Bandgaps. Adv Mater 21:3915–3918CrossRefGoogle Scholar
  9. 9.
    Barberá J, Bardají M, Jiménez J, Laguna A, Martínez MP, Oriol L, Serrano JL, Zaragozano I (2005) Columnar Mesomorphic Organizations in Cyclotriphosphazenes. J Am Chem Soc 127:8994–9002CrossRefGoogle Scholar
  10. 10.
    Jiménez J, Laguna A, Molter AM, Serrano JL, Barberá J, Oriol L (2011) Supermolecular Liquid Crystals with a Six-Armed Cyclotriphosphazene Core: From Columnar to Cubic Phases. Chem Eur J 17:1029–1039CrossRefGoogle Scholar
  11. 11.
    Li C-Z, Matsuo Y, Nakamura E (2009) Luminescent Bow-Tie-Shaped Decaaryl[60]fullerene Mesogens. J Am Chem Soc 131:17058–17059CrossRefGoogle Scholar
  12. 12.
    Ma S, Li X, Huang S, Hu J, Yu H (2019) A Light-Activated Polymer Composite Enables On-Demand Photocontrolled Motion: Transportation at the Liquid/Air Interface. Angew Chem Int Ed 58(9):2655–2659CrossRefGoogle Scholar
  13. 13.
    Huang S, Chen Y, Ma S, Yu H (2018) Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers Enabled by Chirality Transfer. Angew Chem Int Ed 57(38):12524–12528CrossRefGoogle Scholar
  14. 14.
    Chen Y, Huang S, Wang T, Dong Z, Yu H (2019) Confined Self-Assembly Enables Stabilization and Patterning of Nanostructures in Liquid-Crystalline Block Copolymers. Macromolecules 52(4):1892–1898CrossRefGoogle Scholar
  15. 15.
    Demus D, Goodby J, Gray GW, Spiess HW (1998) Handbook of Liquid Crystals. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    Kato T (2002) Liquid crystals: self-assembled soft materials. Curr Opinion Solid State Mater Sci 6:513CrossRefGoogle Scholar
  17. 17.
    Kato T (2002) Self-Assembly of Phase-Segregated Liquid Crystal Structures. Science 295:2414–2418CrossRefGoogle Scholar
  18. 18.
    Haaren JV, Broer D (1998) Chem IndGoogle Scholar
  19. 19.
    Goodby JW, Mehl GH, Saez IM, Tuffin RP, Mackenzie G, Auzely-Velty R, Benvegnu T, Plusquellec D (1998) Liquid crystals with restricted molecular topologies: supermolecules and supramolecular assemblies. Chem Commun:2057–2070Google Scholar
  20. 20.
    Luo Y, Chen S, Zhang H (2015) Influence of the spacer length on the phase behaviors of mesogen-jacketed liquid crystalline polymers with a bulk side-chain. RSC Adv 5:54920–54928CrossRefGoogle Scholar
  21. 21.
    Singh S, Dunmur DA (2002) Liquid Crystals: Fundamentals, World ScientificGoogle Scholar
  22. 22.
    Stimson LM, Wilson MR (2005) Molecular dynamics simulations of side chain liquid crystal polymer molecules in isotropic and liquid-crystalline melts. J Chem Phys 123:034908CrossRefGoogle Scholar
  23. 23.
    Zhang ZL, Zhang LY, Shen ZH, Xing GZ, Fan XH, Zhou QF (2010) Synthesis and properties of mesogen-jacketed liquid crystalline polymers containing bistolane mesogen. J Polym Sci A Polym Chem 48:4627–4639CrossRefGoogle Scholar
  24. 24.
    Chen S, Shu X, Xie H-L, Zhang H-L (2013) Synthesis and liquid crystalline behavior of 2,5-disubstituted styrene-based random copolymers: Effect of difference in length of the rigid core on the mesomorphic behavior of mesogen-jacketed liquid crystalline polymers. Polymer 54:3556–3565CrossRefGoogle Scholar
  25. 25.
    Guan Y, Chen X, Shen Z, Wan X, Zhou Q (2009) Structure–property relationship of thermotropic liquid-crystalline vinyl polymers containing no traditional mesogen. Polymer 50:936–944CrossRefGoogle Scholar
  26. 26.
    Wang X-Z, Zhang H-L, Shi D-C, Chen J-F, Wang X-Y, Zhou Q-F (2005) Synthesis of a novel star liquid crystal polymer using trifunctional initiator via atom transfer radical polymerization. Eur Polym J 41:933–940CrossRefGoogle Scholar
  27. 27.
    Wang X, Zhang H, Shi M, Wang X, Zhou Q (2005) Synthesis of a novel liquid crystal rod-coil star block copolymer consisting of poly(methyl methacrylate) and poly{2,5-bis[(4-methoxy-phenyl)oxycarbonyl] styrene} via atom transfer radical polymerization. J Polym Sci A Polym Chem 43:733–741CrossRefGoogle Scholar
  28. 28.
    Kasko AM, Heintz AM, Pugh C (1998) The Effect of Molecular Architecture on the Thermotropic Behavior of Poly[11-(4‘-cyanophenyl-4“-phenoxy)undecyl acrylate] and Its Relation to Polydispersity. Macromolecules 31:256–271CrossRefGoogle Scholar
  29. 29.
    Kasko AM, Pugh C (2004) Solution Behavior of Topological Isomers of Poly[11-(4‘-cyanophenyl-4‘ ‘-phenoxy)undecyl acrylate]s Prepared by Atom Transfer and Conventional Radical Polymerizations. Macromolecules 37:4993–5001CrossRefGoogle Scholar
  30. 30.
    Kasko AM, Pugh C (2006) Comparison of the Thermotropic and Solution Behavior of Six-Arm Star and Comb Poly[11-(4‘-cyanophenyl-4‘ ‘-phenoxy)undecyl acrylate]s. Macromolecules 39:6800–6810CrossRefGoogle Scholar
  31. 31.
    Tang X, Gao L, Han N, Fan X, Zhou Q (2007) Synthesis and characterization of 4-arm star side-chain liquid crystalline polymers containing azobenzene with different terminal substituents via ATRP. J Polym Sci A Polym Chem 45:3342–3348CrossRefGoogle Scholar
  32. 32.
    Kricheldorf HR, Stukenbrock T, Friedrich C (1998) New polymer syntheses. XCVI. Star-shaped LC-polyesters derived from ?-(4-hydroxyphenyl)propionic acid and 4-hydroxybenzoic acid. J Polym Sci A Polym Chem 36:1387–1395CrossRefGoogle Scholar
  33. 33.
    Yang F, Bai Y, Min BG, Kumar S, Polk MB (2003) Synthesis and properties of star-like wholly aromatic polyester fibers. Polymer 44:3837–3846CrossRefGoogle Scholar
  34. 34.
    Pan Q, Gao L, Chen X, Fan X, Zhou Q (2007) Star Mesogen-Jacketed Liquid Crystalline Polymers with Silsesquioxane Core: Synthesis and Characterization. Macromolecules 40:4887–4894CrossRefGoogle Scholar
  35. 35.
    Hwang JJ, Iyer SN, Li L-S, Claussen R, Harrington DA, Stupp SI (2002) Self-assembling biomaterials: Liquid crystal phases of cholesteryl oligo(L-lactic acid) and their interactions with cells. Proc Natl Acad Sci 99:9662–9667CrossRefGoogle Scholar
  36. 36.
    Reinitzer F (1888) Beiträge zur Kenntniss des Cholesterins. Monatsh Chem 9:421–441CrossRefGoogle Scholar
  37. 37.
    Hu J-S, Zhang B-Y, Tian M, Ren S-C, Guo D-Y (2005) Mesomorphic properties of side-chain cholesteric liquid-crystalline elastomers. Colloid Polym Sci 283:1349–1355CrossRefGoogle Scholar
  38. 38.
    Cha SW, Jin J-I, Kim D-C, Zin W-C (2001) Combined Type Liquid Crystalline Poly(oxy-1,4-phenyleneoxyterephthaloyl)s Bearing Cholesterol Pendants Attached through Polymethylene Spacers. Macromolecules 34:5342–5348CrossRefGoogle Scholar
  39. 39.
    Zhang L, Wang Q-R, Jiang X-S, Cheng S-X, Zhuo R-X (2005) Studies on functionalization of poly(ε-caprolactone) by a cholesteryl moiety. J Biomater Sci Polym Ed 16:1095–1108CrossRefGoogle Scholar
  40. 40.
    Salleh NM, Sheikh MRK, Yahya R, Karim MR, Hassan A (2013). J Polym Res 20(131):4–9Google Scholar
  41. 41.
    Broer DJ, Lub J, Mol GN (1995) Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378:467–469CrossRefGoogle Scholar
  42. 42.
    Bunning TJ, Kreuzer FH (1995). Trends Polym Sci 3:318–323Google Scholar
  43. 43.
    Collings PJ, Hird M (1997) Introduction to liquid crystals: chemistry and physics. Taylor and Francis, New YorkCrossRefGoogle Scholar
  44. 44.
    Shaikh VAE, Maldar NN, Lonikar SV, Rajan CR, Ponrathnam S (1999) Thermotropic liquid crystalline behavior of cholesterol-linked hydroxyethyl cellulose. J Appl Polym Sci 72:763–770CrossRefGoogle Scholar
  45. 45.
    Marcelis ATM, Koudijs A, Klop EA, Sudhölter EJR (2001) Influence of spacer and terminal group lengths on the smectic ordering of cholesterol-containing dimer liquid crystals. Liq Cryst 28:881–887CrossRefGoogle Scholar
  46. 46.
    Zhou Y, Briand V, Sharma N, Ahn S-k, Kasi R (2009) Polymers Comprising Cholesterol: Synthesis, Self-Assembly, and Applications. Materials 2:636–660CrossRefGoogle Scholar
  47. 47.
    Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150CrossRefGoogle Scholar
  48. 48.
    Li S, Liu L, Garreau H, Vert M (2003) Lipase-Catalyzed Biodegradation of Poly(ε-caprolactone) Blended with Various Polylactide-Based Polymers. Biomacromolecules 4:372–377CrossRefGoogle Scholar
  49. 49.
    Dong C-M, Qiu K-Y, Gu Z-W, Feng X-D (2001) Synthesis of Star-Shaped Poly(ε-caprolactone)-b-poly(dl-lactic acid-alt-glycolic acid) with Multifunctional Initiator and Stannous Octoate Catalyst. Macromolecules 34:4691–4696CrossRefGoogle Scholar
  50. 50.
    Liu Y-C, Ko B-T, Lin C-C (2001) A Highly Efficient Catalyst for the “Living” and “Immortal” Polymerization of ε-Caprolactone andl-Lactide. Macromolecules 34:6196–6201CrossRefGoogle Scholar
  51. 51.
    Jeon HJ, You YC, Youk JH (2009) Synthesis and characterization of amphiphilic poly(N-vinyl pyrrolidone)-b-poly(ε-caprolactone) copolymers by a combination of cobalt-mediated radical polymerization and ring-opening polymerization. J Polym Sci A Polym Chem 47:3078–3085CrossRefGoogle Scholar
  52. 52.
    Keul H, Möller M (2009) Synthesis and degradation of biomedical materials based on linear and star shaped polyglycidols. J Polym Sci A Polym Chem 47:3209–3231CrossRefGoogle Scholar
  53. 53.
    Möller M, Kånge R, Hedrick JL (2000) Sn(OTf)2 and Sc(OTf)3: Efficient and versatile catalysts for the controlled polymerization of lactones. J Polym Sci A Polym Chem 38:2067–2074CrossRefGoogle Scholar
  54. 54.
    Doganci E, Gorur M, Uyanik C, Yilmaz F (2014) Supramolecular inclusion complexes of a star polymer containing cholesterol end-capped poly(ε-caprolactone) arms with β-cyclodextrin. J Polym Sci A Polym Chem 52:3406–3420CrossRefGoogle Scholar
  55. 55.
    Eren O, Gorur M, Keskin B, Yilmaz F (2013) Synthesis and characterization of ferrocene end-capped poly(ε-caprolactone)s by a combination of ring-opening polymerization and “click” chemistry techniques. React Funct Polym 73:244–253CrossRefGoogle Scholar
  56. 56.
    Qu J, Suzuki Y, Shiotsuki M, Sanda F, Masuda T (2007) 3-Butyl-2-yl- and Propargyl Cholesteryl Carbonates. Chiroptical and Liquid Crystalline Properties of their Polymers. Macromol Chem Phys 208:1992–1999CrossRefGoogle Scholar
  57. 57.
    Guo J, Sun J, Cao H, Zhao D, Yang H (2007) Synthesis and characterization of functionalized triblock polymer: The prepared polymer is cholesteryl terminated and chain-extended PCL. J Appl Polym Sci 105:3505–3512CrossRefGoogle Scholar
  58. 58.
    Xu J, Ling TC, He C (2008) Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. J Polym Sci A Polym Chem 46:4691–4703CrossRefGoogle Scholar
  59. 59.
    Zhang B-Y, Hu J-S, Jia Y-G, Du B-G (2003) Side-chain Cholesteric Liquid Crystalline Elastomers Derived from Nematic Bis-olefinic Crosslinking Units. Macromol Chem Phys 204:2123–2129CrossRefGoogle Scholar
  60. 60.
    Hu J-s, Zhang B-y, Sun K, Li Q-y (2003) Side chain cholesteric liquid crystalline elastomers: synthesis and phase behaviour. Liq Cryst 30:1267–1275CrossRefGoogle Scholar
  61. 61.
    Goodby JW, Demus D, Gray GW, Spiess HW, Vill V (1998) Handbook of liquid crystals. Vol. 1, fundamentals. Wiley-VCH, WeinheimGoogle Scholar
  62. 62.
    Nishizawa K, Nagano S, Seki T (2009) Novel Liquid Crystalline Organic−Inorganic Hybrid for Highly Sensitive Photoinscriptions. Chem Mater 21:2624–2631CrossRefGoogle Scholar
  63. 63.
    Klok H-A, Hwang JJ, Iyer SN, Stupp SI (2002) Cholesteryl-(l-Lactic Acid)n̄Building Blocks for Self-Assembling Biomaterials. Macromolecules 35:746–759CrossRefGoogle Scholar
  64. 64.
    Kaneko T, Nagasawa H, Gong JP, Osada Y (2004) Liquid Crystalline Hydrogels: Mesomorphic Behavior of Amphiphilic Polyacrylates Bearing Cholesterol Mesogen. Macromolecules 37:187–191CrossRefGoogle Scholar
  65. 65.
    Sugiyama K, Shiraishi K, Matsumoto T (2003) Assembly of amphiphilic poly[2-(methacryloyloxy)ethyl phosphorylcholine] with cholesteryl moieties as terminal groups. J Polym Sci A Polym Chem 41:1992–2000CrossRefGoogle Scholar
  66. 66.
    Shiraishi K, Sugiyama M, Okamura Y, Sugiyama K (2007) Cholesteryl moiety terminated amphiphilic polymethacrylates containing nucleic acid bases for drug delivery. J Appl Polym Sci 103:3064–3075CrossRefGoogle Scholar
  67. 67.
    Xu J-T, Xue L, Fan Z-Q, Wu Z-H, Kim JK (2006) Competition of Crystalline and Liquid Crystalline Moieties in Self-Assembly of Poly(oxyethylene) Cholesterol Ethers. Macromolecules 39:2981–2988CrossRefGoogle Scholar
  68. 68.
    López-Quintela MA, Akahane A, Rodríguez C, Kunieda H (2002) Thermotropic Behavior of Poly(oxyethylene) Cholesterol Ethers. J Colloid Interface Sci 247:186–192CrossRefGoogle Scholar
  69. 69.
    Matsuyama A, Kato T (1998) Weakly nematic–highly nematic phase transitions in main-chain liquid-crystalline polymers. Phys Rev E 58:585–594CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Processing TechKocaeli UniversityKocaeliTurkey
  2. 2.Department of ChemistryGebze Technical UniversityGebzeTurkey

Personalised recommendations