Advertisement

Synthesis of post-metallocene catalyst and study of its olefin polymerization activity at room temperature in aqueous solution followed by prediction of yield

  • D. AgrawalEmail author
  • Y. Shrivastava
  • S. K. De
  • P. K. Singh
ORIGINAL PAPER
  • 3 Downloads

Abstract

In the research work presented here, the following work has been carried out: (1) Synthesis of the post-metallocene complex (2) Investigation of its olefin polymerization activity at room temperature in aqueous solution (3) Characterizations to verify the synthesized catalyst (4) Calculation of the yield of the synthesized polymer by varying the moles/amount of catalyst, co-catalyst, and monomer (5) Prediction of an appropriate proportion of catalyst, co-catalyst, and monomer, which can result in maximum yield. The polymer sample has also been characterized by different instrumental techniques viz. 1H NMR spectroscopy and dynamic light scattering (DLS) to investigate the properties of the polymer. Moreover, for identifying the best combination of complexes, response surface methodology has been adopted. From the analyses, a safe zone has been predicted, which can result in optimum yield. The obtained zone has been validated by performing more experiments. From the results, it has been perceived that the developed methodology has the capability to predict the suitable amount of complexes to be taken so that the yield is maximum.

Keywords

Non-metallocene catalyst Early transition metal Aqueous polymerization Polymethyl methacrylate Response surface methodology 

Notes

Acknowledgments

The author confirms that the research work has not been funded or sponsored by any organization in any manner.

References

  1. 1.
    Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014) The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7(7):5069–5108CrossRefGoogle Scholar
  2. 2.
    Böhm L (1978) Ethylene polymerization process with a highly active Ziegler-Natta catalyst: 1. Kinetics. Polymer 19(5):553–561CrossRefGoogle Scholar
  3. 3.
    Cossee P (1964) Ziegler-Natta catalysis I. mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J Catal 3(1):80–88CrossRefGoogle Scholar
  4. 4.
    Quyoum R, Wang Q, Tudoret M-J, Baird MC, Gillis DJ (1994) Eta. 5-C5Me5TiMe3B (C6F5) 3: a carbocationic olefin polymerization initiator masquerading as a Ziegler-Natta catalyst. J Am Chem Soc 116(14):6435–6436CrossRefGoogle Scholar
  5. 5.
    Kaminsky W (2017) The discovery and evolution of metallocene-based olefin polymerization catalysts. Rendiconti Lincei 28(1):87–95CrossRefGoogle Scholar
  6. 6.
    Kaminsky W, Laban A (2001) Metallocene catalysis. Appl Catal A Gen 222(1–2):47–61CrossRefGoogle Scholar
  7. 7.
    Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174CrossRefGoogle Scholar
  8. 8.
    Baier MC, Zuideveld MA, Mecking S (2014) Post-Metallocenes in the industrial production of Polyolefins. Angew Chem Int Ed 53(37):9722–9744CrossRefGoogle Scholar
  9. 9.
    Rishina LА, Kissin YV, Lalayan SS, Gagieva SC, Тuskaev VА, Krasheninnikov VG (2017) Polymerization of alkenes with a post-metallocene catalyst containing a titanium complex with an oxyquinolinyl ligand. J Polym Sci A Polym Chem 55(11):1844–1854CrossRefGoogle Scholar
  10. 10.
    De SK, Sharma K, Sharma C (2018) Synthesis and catalytic performance of a new post-metallocene titanium complex having asymmetric tetradentate [ONSO]-type amino acid-based chelating ligand for acrylate polymerization at room temperature in aqueous emulsion. Colloid Polym Sci:1–13Google Scholar
  11. 11.
    Iwashita A, Chan MC, Makio H, Fujita T (2014) Attractive interactions in olefin polymerization mediated by post-metallocene catalysts with fluorine-containing ancillary ligands. Catalysis Science & Technology 4(3):599–610CrossRefGoogle Scholar
  12. 12.
    Nakata N, Toda T, Ishii A (2011) Recent advances in the chemistry of group 4 metal complexes incorporating [OSSO]-type bis (phenolato) ligands as post-metallocene catalysts. Polym Chem 2(8):1597–1610CrossRefGoogle Scholar
  13. 13.
    Rishina LA, Lalayan SS, Gagieva SC, Tuskaev VA, Perepelitsyna EO, Kissin YV (2013) Polymers of propylene and higher 1-alkenes produced with post-metallocene complexes containing a saligenin-type ligand. Polymer 54(24):6526–6535CrossRefGoogle Scholar
  14. 14.
    Sharma K, De SK (2016) A post-metallocene titanium (IV) complex bearing asymmetric tetradentate [ONNO]-type amino acid-based ligand and its activity toward polymerization of polar monomers at room temperature in aqueous emulsion. Colloid Polym Sci 294(12):2051–2070CrossRefGoogle Scholar
  15. 15.
    Gates DP, Svejda SA, Oñate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (α-diimine) nickel (II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33(7):2320–2334CrossRefGoogle Scholar
  16. 16.
    Szabo MJ, Galea NM, Michalak A, Yang S-Y, Groux LF, Piers WE, Ziegler T (2005) Copolymerization of ethylene with polar monomers by anionic substitution. Theoretical study based on acrylonitrile and the brookhart diimine catalyst. Organometallics 24(9):2147–2156CrossRefGoogle Scholar
  17. 17.
    Woo TK, Blöchl PE, Ziegler T (2000) Monomer capture in Brookhart's Ni (II) diimine olefin polymerization catalyst: static and dynamic quantum mechanics/molecular mechanics study. J Phys Chem A 104(1):121–129CrossRefGoogle Scholar
  18. 18.
    Li L, Jeon M, Kim SY (2009) Synthesis, characterization and ethylene polymerisation of 9, 10-phenanthrenequinone-based nickel (II)-α-diimine complexes. J Mol Catal A Chem 303(1–2):110–116CrossRefGoogle Scholar
  19. 19.
    Weskamp T, Böhm VP, Herrmann WA (2000) N-heterocyclic carbenes: state of the art in transition-metal-complex synthesis. J Organomet Chem 600(1–2):12–22CrossRefGoogle Scholar
  20. 20.
    Aizenberg M, Milstein D (1994) Catalytic activation of carbon-fluorine bonds by a soluble transition metal complex. Science 265(5170):359–361CrossRefGoogle Scholar
  21. 21.
    Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H (2013) A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat Chem 5(4):342–347CrossRefGoogle Scholar
  22. 22.
    Yoshida Y, Matsui S, Takagi Y, Mitani M, Saito J, Ishii S-i, Nakano T, Tanaka H, Kashiwa N, Fujita T (2003) 132 PI catalysts: new titanium complexes having two pyrrolide-imine chelate ligands for olefin polymerization. In: Stud Surf Sci Catal, vol 145. Elsevier, pp 521–522Google Scholar
  23. 23.
    Yoshida Y, Saito J, Mitani M, Takagi Y, Matsui S, Ishii S-i, Nakano T, Kashiwa N, Fujita T (2002) Living ethylene/norbornene copolymerisation catalyzed by titanium complexes having two pyrrolide-imine chelate ligands. Chem Commun (12):1298–1299Google Scholar
  24. 24.
    Matsugi T, Matsui S, Kojoh S-i, Takagi Y, Inoue Y, Fujita T, Kashiwa N (2001) New titanium complexes having two indolide-imine chelate ligands for living ethylene polymerization. Chem Lett 30(6):566–567CrossRefGoogle Scholar
  25. 25.
    Matsugi T, Matsui S, Kojoh S-i, Takagi Y, Inoue Y, Nakano T, Fujita T, Kashiwa N (2002) New titanium complexes bearing two Indolide− imine chelate ligands for the polymerization of ethylene. Macromolecules 35(13):4880–4887CrossRefGoogle Scholar
  26. 26.
    Yang Y, Wang Q, Cui D (2008) Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes. J Polym Sci A Polym Chem 46(15):5251–5262CrossRefGoogle Scholar
  27. 27.
    Biswas K, Prieto O, Goldsmith PJ, Woodward S (2005) Remarkably stable (Me3Al) 2· DABCO and Stereoselective nickel-catalyzed AlR3 (R= me, et) additions to aldehydes. Angew Chem Int Ed 44(15):2232–2234CrossRefGoogle Scholar
  28. 28.
    Bochmann M, Sarsfield MJ (1998) Reaction of AlR3 with [CPh3][B (C6F5) 4]: facile degradation of [B (C6F5) 4]-by transient “[AlR2]+”. Organometallics 17(26):5908–5912CrossRefGoogle Scholar
  29. 29.
    Matsugi T, Fujita T (2008) High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem Soc Rev 37(6):1264–1277CrossRefGoogle Scholar
  30. 30.
    Iwashita A, Makio H, Fujita T (2011) Phenoxy–imine group 4 metal complexes for olefin (co) polymerization including polar monomer copolymerization. Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II Springer:1–38Google Scholar
  31. 31.
    Bahuleyan BK, Son GW, Park DW, Ha CS, Kim I (2008) Ethylene polymerization by sterically and electronically modulated Ni (II) α-diimine complexes. J Polym Sci A Polym Chem 46(3):1066–1082CrossRefGoogle Scholar
  32. 32.
    Chaudhary V, Sharma S (2019) Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. J Polym Res 26(5):102.  https://doi.org/10.1007/s10965-019-1767-8 CrossRefGoogle Scholar
  33. 33.
    Soula R, Novat C, Tomov A, Spitz R, Claverie J, Drujon X, Malinge J, Saudemont T (2001) Catalytic polymerization of ethylene in emulsion. Macromolecules 34(7):2022–2026CrossRefGoogle Scholar
  34. 34.
    Bauers FM, Mecking S (2001) Aqueous homo-and copolymerization of ethylene by neutral nickel (II) complexes. Macromolecules 34(5):1165–1171CrossRefGoogle Scholar
  35. 35.
    De SK, Bhattacharjee M (2013) Titanium (IV) nonmetallocene complex catalyzed aqueous homopolymerization and copolymerization of styrene and methyl methacrylate: an environmentally friendly approach to ultrahigh molecular weight polymer nanoparticles. J Polym Sci A Polym Chem 51(7):1540–1549CrossRefGoogle Scholar
  36. 36.
    Wehrmann P, Zuideveld M, Thomann R, Mecking S (2006) Copolymerization of ethylene with 1-butene and norbornene to higher molecular weight copolymers in aqueous emulsion. Macromolecules 39(18):5995–6002CrossRefGoogle Scholar
  37. 37.
    Groysman S, Goldberg I, Kol M, Genizi E, Goldschmidt Z (2003) From THF to furan: activity tuning and mechanistic insight via sidearm donor replacement in group IV amine bis (phenolate) polymerization catalysts. Organometallics 22(15):3013–3015CrossRefGoogle Scholar
  38. 38.
    Gao B, Zhang L, Zhang D (2018) Synthesis and characterization of two novel Schiff base type macromolecular ligands and preliminary research on luminescent property of polymer-rare earth complexes. J Polym Res 25(2):41.  https://doi.org/10.1007/s10965-017-1436-8 CrossRefGoogle Scholar
  39. 39.
    Al-Harbi A, Hammond MJ, Parkin G (2018) Organometallic zirconium compounds in an oxygen-rich coordination environment: synthesis and structural characterization of Tris (oxoimidazolyl) hydroboratozirconium compounds. Inorg Chem 57:1426–1437CrossRefGoogle Scholar
  40. 40.
    Sharmin R, Sundararaj U, Shah S, Griend LV, Sun Y-J (2006) Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant. Chem Eng Sci 61(19):6372–6384CrossRefGoogle Scholar
  41. 41.
    Zhang J (1999) Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Netw 12(6):927–938CrossRefGoogle Scholar
  42. 42.
    Zhang J, Martin E, Morris A, Kiparissides C (1997) Inferential estimation of polymer quality using stacked neural networks. Comput Chem Eng 21:S1025–S1030CrossRefGoogle Scholar
  43. 43.
    Zhang J, Morris A, Martin E, Kiparissides C (1998) Prediction of polymer quality in batch polymerisation reactors using robust neural networks. Chem Eng J 69(2):135–143CrossRefGoogle Scholar
  44. 44.
    Zhang J, Martin EB, Morris AJ, Kiparissides C (1997) Inferential estimation of polymer quality using stacked neural networks. Comput Chem Eng 21:S1025–S1030.  https://doi.org/10.1016/S0098-1354(97)87637-5 CrossRefGoogle Scholar
  45. 45.
    Raghava R, Caddell RM, Yeh GS (1973) The macroscopic yield behaviour of polymers. J Mater Sci 8(2):225–232CrossRefGoogle Scholar
  46. 46.
    Ward IM (1971) The yield behaviour of polymers. J Mater Sci 6(11):1397–1417CrossRefGoogle Scholar
  47. 47.
    Shrivastava Y, Singh B (2018) Assessment of stable cutting zone in CNC turning based on empirical mode decomposition and genetic algorithm approach. Proc Inst Mech Eng C J Mech Eng Sci 232(20):3573–3594CrossRefGoogle Scholar
  48. 48.
    Shrivastava Y, Singh B (2018) Estimation of stable cutting zone in turning based on empirical mode decomposition and statistical approach. J Braz Soc Mech Sci Eng 40(2):77.  https://doi.org/10.1007/s40430-018-0989-8 CrossRefGoogle Scholar
  49. 49.
    Montgomery DC (2008) Design and analysis of experiments. John Wiley & SonsGoogle Scholar
  50. 50.
    Bhushan RK (2013) Multiresponse optimization of Al alloy-SiC composite machining parameters for minimum tool wear and maximum metal removal rate. J Manuf Sci Eng 135(2):021013CrossRefGoogle Scholar
  51. 51.
    Singh B, Nanda B (2012) Slip damping mechanism in welded structures using response surface methodology. Exp Mech 52(7):771–791CrossRefGoogle Scholar
  52. 52.
    Kaymaz I, McMahon CA (2005) A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics 20(1):11–17CrossRefGoogle Scholar
  53. 53.
    Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • D. Agrawal
    • 1
    Email author
  • Y. Shrivastava
    • 1
  • S. K. De
    • 2
  • P. K. Singh
    • 1
  1. 1.Jaypee University of Engineering and TechnologyGunaIndia
  2. 2.Bangabasi Evening CollegeKolkataIndia

Personalised recommendations