Novel highly hydrophilic organic/inorganic composites based on polyacrylamide and silica: synthesis strategy, structure and swelling behaviour

  • Olga SlisenkoEmail author
  • Yevgen Mamunya


A series of novel hydrophilic organic-inorganic composites (OIC) with enhanced sorption properties were synthesized by one-pot synthesis technique - in situ radical polymerization of acrylamide (AM) and hydrolytic polycondensation of sodium silicate in aqueous solution. Formation of mixed organic-inorganic polyacrylamide (PAM)/SiO2 phase has been detected by FTIR spectroscopy (appropriate changes in H-bonds network structure of PAM) and DSC analysis (dramatic decreasing glass temperature of PAM). Additive decreasing of mass loss of OIC with increasing of SiO2 content is explained by the increasing of PAM-content in mixed PAM/SiO2 phase on the interface of organic and inorganic phases. The formation of SiO2 aggregates with different dispersity, which, in their turn, form submicron structures in composites with SiO2 content more than 15 wt.% was observed from SEM data. Structurization of OIC resulted in the enhanced sorption characteristics (swelling capacity of the OIC reaches 2730%). Sorption kinetic curves obtained both in isothermic and isochoric regimes demonstrate that the swelling process of OIC is limited by relaxation of PAM chains and can be described by sorption mechanism of Type II.


Composite Hydrogel Swelling pressure kinetics Structure-property relations 



  1. 1.
    Gon M, Tanaka K, Chujo Y (2017) Creative synthesis of organic-inorganic molecular hybrid materials. Bull Chem Soc Jpn 90:463–474CrossRefGoogle Scholar
  2. 2.
    Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J MaterSci 51:271–310CrossRefGoogle Scholar
  3. 3.
    Boonmahitthisud A, Nakajima L, Nguyen KD, Kobayashi T (2016) Composite effect of silica nanoparticle on the mechanical properties of cellulose-based hydrogels derived from cottonseed hulls. J Appl Polym Sci 134:44557–44569Google Scholar
  4. 4.
    Ershad-Langroudi A, Rabiee A (2012) A novel acrylamide-anatase hybrid nanocomposites. J Polym Res 19:9970–9981CrossRefGoogle Scholar
  5. 5.
    Tong X, Zheng J, Lu Y, Zhang Z, Cheng H (2007) Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett 61:1704–1706CrossRefGoogle Scholar
  6. 6.
    Lee WF, Chen YJ (2001) Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J Appl Polym Sci 82:2487–2496CrossRefGoogle Scholar
  7. 7.
    Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266CrossRefGoogle Scholar
  8. 8.
    Fei X, Xu S, Feng S, Lin J, Lin J, Shi X, Wang J (2011) Mechanically strengthened double network composite hydrogels with high water content: a preliminary study. J Polym Res 18:1131–1136CrossRefGoogle Scholar
  9. 9.
    Chen P, Xu S, Wu R, Wang J, Gu R, Du J (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200CrossRefGoogle Scholar
  10. 10.
    Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741CrossRefGoogle Scholar
  11. 11.
    Li H-J, Jiang H, Haraguchi K (2018) Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks. Macromolecules 51:529–539CrossRefGoogle Scholar
  12. 12.
    Du J, Xu S, Feng S, Yu L, Wang J, Liu Y (2016) Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking. Soft Matter 12:1649–1654CrossRefGoogle Scholar
  13. 13.
    Loos W, Verbrugghe S, Goethals EJ, Du Prez FE, Bakeeva IV, Zubov VP (2003) Thermo-responsive organic/inorganic hybrid hydrogels based on poly(N-vinylcaprolactam). Macromol Chem Phys 204:98–103CrossRefGoogle Scholar
  14. 14.
    Milimouk I, Hecht AM, Beysens D, Geissler E (2001) Swelling of neutralized polyelectrolyte gels. Polymer 42:487–494CrossRefGoogle Scholar
  15. 15.
    Dubrovskii SA, Rakova GV, Lagutina MA, Kazanskii KS (2001) Osmotic properties of poly(ethylene oxide) gels with localized charged units. Polymer 42:8075–8083CrossRefGoogle Scholar
  16. 16.
    Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1:84–89CrossRefGoogle Scholar
  17. 17.
    Ou R, Zhang H, Kim S, SimonGP HH, Wang H (2017) Improvement of the swelling properties of ionic hydrogels by the incorporation of hydrophobic, elastic microfibers for forward osmosis applications. Ind Eng Chem Res 56:505–512CrossRefGoogle Scholar
  18. 18.
    Chen Y, Chen Q, Song L, Li HP, Hou FZ (2009) Preparation and characterization of encapsulation of Europium complex into meso-structured silica monoliths using PEG as the template. Microporous Mesoporous Mater 122:7–12CrossRefGoogle Scholar
  19. 19.
    Magalhães ASG, Neto MPA, Bezerra MN, Ricardo NMPS, Feitosa JPA (2012) Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim Nova 35:1464–1467CrossRefGoogle Scholar
  20. 20.
    Zhang X, Bhuvana S, Loo LS (2012) Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy. J Appl PolymSci 125:E175–E180CrossRefGoogle Scholar
  21. 21.
    Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387CrossRefGoogle Scholar
  22. 22.
    Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos Part A-Appl S 101:237–242CrossRefGoogle Scholar
  23. 23.
    Tang L, Dang J, He M, Li J, Kong J, Tang Y, Gu J (2019) Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos Sci Technol 169:120–126CrossRefGoogle Scholar
  24. 24.
    Alam MA, Takafuji M, Ihara H (2013) Thermosensitive hybrid hydrogels with silica nanoparticle-cross-linked polymer networks. J Colloid Interface Sci 405:109–117CrossRefGoogle Scholar
  25. 25.
    Thomas NL, Windle AH (1978) Transport of methanol in poly(methyl methacrylate). Polymer 19:255–265CrossRefGoogle Scholar
  26. 26.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, p 414Google Scholar
  27. 27.
    Thomas NL, Windle AH (1980) A deformation model for Case II diffusion. Polymer 21:613–619CrossRefGoogle Scholar
  28. 28.
    Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 19:489–496CrossRefGoogle Scholar
  29. 29.
    Martinez-Ruvalcaba A, Sanchez-Diaz JC, Becerra F, Cruz-Barba LE, Gonzales-Alvarez A (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32CrossRefGoogle Scholar
  30. 30.
    Roy S, Xu WQ, Park SJ, Liechti KM (2000) Anomalous diffusion of a penetrant in a viscoelastic polymer: modelling and testing. Polym Polym Compos 8:205–305Google Scholar
  31. 31.
    Garcia-Fierro JL, Aleman JV (1985) Diffusion of water in glassy epoxide prepolymers. Polym Eng Sci 25:419–424CrossRefGoogle Scholar
  32. 32.
    Wack H, Ulbricht M (2007) Method and model for the analysis of gel-blocking effects during the swelling of polymeric hydrogels. Ind Eng Chem Res 46:359–364CrossRefGoogle Scholar
  33. 33.
    Nguyen VN, Perrin FX, Vernet JL (2005) Water permeability of organic/inorganic hybrid coatings prepared by sol-gel method: a comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models. Corros Sci 47:397–412CrossRefGoogle Scholar
  34. 34.
    Wack H, Ulbricht M (2009) Effect of synthesis composition on the swelling pressure of polymeric hydrogels. Polymer 50:2075–2080CrossRefGoogle Scholar
  35. 35.
    Huang X, Unno H, Akenata T, Hirasa O (1988) Swelling pressure of poly(vinylmethylether) gel (PVMEG) in swelling process. J Chem Eng Jpn 21:551–555Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular Chemistry of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations