Advertisement

Polymerization of ε-caprolactone with degraded PET for its functionalization

  • Karina Espinoza-García
  • Angel Marcos-Fernández
  • Rodrigo Navarro
  • Aurelio Ramírez-HernándezEmail author
  • Jose Eduardo Báez-García
  • Gustavo Rangel-Porras
ORIGINAL PAPER
  • 46 Downloads

Abstract

Poly(caprolactone) (PCL) was synthesized from the polymerization of ε-caprolactone (CL) with degraded poly(ethylene terephthalate) (PET) for its functionalization using heptamolybdate of ammonium and tin(II) 2-ethylhexanoate, as catalyst and initiator, respectively. Polymerization of CL with bis(2-hydroxyethyl) terephthalate (BHET) was carried out to make a comparison. From the analysis by FTIR, the functional groups of polycaprolactone and degraded PET were identified by FTIR. The chemical shift at 165.59 ppm obtained by NMR corresponded to the chemical bond between the carbonyl of the PCL bound to the -CH2CO2-C10H8O4 of the degraded PET. The number average molar mass of polymer obtained was determined and its chemical structure was proposed. Crystallinity and the temperatures of melting and degradation depended of the mass of degraded PET used in the synthesis. Based on the proposed chemical structure, the synthesized polymer could be used in the preparation of other polymers.

Keywords

Degraded PET PCL Synthesis Catalyst Characterization 

Notes

Acknowledgements

We are grateful to Universidad del Papaloapan and Martha Rocio Valencia Estacio, for their assistance on this article.

Supplementary material

10965_2019_1821_MOESM1_ESM.docx (511 kb)
ESM 1 (DOCX 510 kb)

References

  1. 1.
    Maris J, Bourdon S, Brossard J, Cauret L, Fontaine L, Montembault V (2018) Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym Degrad Stab 147:245–266CrossRefGoogle Scholar
  2. 2.
    Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Composites Part B 115:409–422CrossRefGoogle Scholar
  3. 3.
    Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem:1–11Google Scholar
  4. 4.
    Wojciech BJ (2015) Thermal utilization (treatment) of plastic waste. Energy, vol 90, pp 1468–1477Google Scholar
  5. 5.
    Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64CrossRefGoogle Scholar
  6. 6.
    Zhou X, Wang C, Fang C, Yu R, Li Y, Lei W (2019) Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate). Waste Manag 85:164–174CrossRefGoogle Scholar
  7. 7.
    Tamio E, Lakshmi R, Hiroaki N, Satoru K, Yoshinobu N, Kazuhiro E (2017) Composite engineering–direct bonding of plastic PET films by plasma irradiation. Procedia Eng 171:88–103CrossRefGoogle Scholar
  8. 8.
    Ren M, Zhang Z, Wu S, Wei J, Xiao C (2006) Uniaxial orientation and crystallization behavior of amorphous poly(ethylene terephthalate) fibers. J Polym Res 13:9–15CrossRefGoogle Scholar
  9. 9.
    Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477CrossRefGoogle Scholar
  10. 10.
    Abdelaal MY, Sobahi TR, Makki MS (2008) Chemical degradation of poly(ethylene terephthalate). Int J Polym Mater 57:73–80CrossRefGoogle Scholar
  11. 11.
    Sharma V, Shrivastava P, Agarwal D (2015) Degradation of PET-bottles to monohydroxyethyl terephthalate(MHT) using ethylene glycol and hydrotalcite. J Polym Res 22:241CrossRefGoogle Scholar
  12. 12.
    Mohammadi SR, Khonakdar HA, Ehsani M, Jafari SH, Wagenknecht U, Kretzschmar B (2011) Investigation of thermal behavior and decomposition kinetic of PET/PEN blends and their clay containing nanocomposites. J Polym Res 18:1765–1775CrossRefGoogle Scholar
  13. 13.
    Paszun D, Spychaj T (1997) Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res 36:1373–1383CrossRefGoogle Scholar
  14. 14.
    Hsiao KJ, Jen ZF, Yang JC, Chen LT (2002) Physical properties of R-PET/CD-PET polyblended hollow filaments and their kinetics of alkaline hydrolysis. J Polym Res 9:53–59CrossRefGoogle Scholar
  15. 15.
    Yoshioka T, Motoki T, Okuwaki A (2001) Kinetics of Hydrolsis of PET powder in nitric acid by a modified shrinking Core model. Ind Eng Chem Res 40:75–79CrossRefGoogle Scholar
  16. 16.
    Espinoza GK, Navarro R, Ramírez-Hernández A, Marcos-Fernández A (2017) New routes to difunctional macroglycols using ethylene carbonate: reaction with bis-(2-hydroxyethyl) terephthalate and degradation of poly(ethylene terephthalate). Polym Degrad Stab 144:195–206CrossRefGoogle Scholar
  17. 17.
    Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10:247–254CrossRefGoogle Scholar
  18. 18.
    Stanley N, Bucataru G, Miao Y, Favrelle A, Bria M, Stoffelbach F, Woisel P, Zinck P (2014) Brönsted acids catalyzed polymerization of ε-caprolactone in water, a mild and straightforward route to poly(ε-caprolactone)-graft-water-soluble polysaccharides. J Polym Sci Chem 52:2139–2145CrossRefGoogle Scholar
  19. 19.
    Jikei M, Takeyama Y, Yamadoi Y, Shinbo N, Matsumoto K, Motokawa M, Ishibashi K, Yamamoto F (2015) Synthesis and properties of poly(L-lactide)-poly(ε-caprolactone) multiblock copolymers by the self-polycondensation of diblockmacromonomers. Polym J 47:657–665CrossRefGoogle Scholar
  20. 20.
    Sisson AL, Duygu E, Andreas L (2013) The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polym 54:4333–4350CrossRefGoogle Scholar
  21. 21.
    Ting-Yu S, Yang J, Jui-Hsiang C (2012) Synthesis, characterization and evaluation of segmented polycaprolactone for development of dura substitute. Procedia Eng 36:144–149CrossRefGoogle Scholar
  22. 22.
    Báez JE, Martínez-Rosales M, Martínez-Richa A (2003) Ring-opening polymerization of lactones catalyzed by decamolybdate anion. Polym 44:6767–6772CrossRefGoogle Scholar
  23. 23.
    Penczek S, Duda A, Kowalski A, Libiszowski J, Majerska K, Biela T (2000) On the mechanism of polymerization of cyclic esters induced by tin(II) octoate. Macromol Symp 157:61–70CrossRefGoogle Scholar
  24. 24.
    Storey RF, Taylor AE (1998) Effect of stannous octoate on the composition, molecular weight, and molecular weight distribution of ethylene glycol-initiated poly(ε-caprolactone). J Macromol Sci Part A 35:723–750CrossRefGoogle Scholar
  25. 25.
    Kiersnowski A, Budde H, Kressler J, Piglowski J (2004) Synthesis and structure of poly(ε-caprolactone)/synthetic montmorillonite nano-intercalates. Eur Polym J 40:2591–2598CrossRefGoogle Scholar
  26. 26.
    Asuman C, Nurufe K, Ramazan O, Ali EM, Faruk Y (2009) Synthesis, characterization and thermal properties of a novel star polymer consisting of poly(ε-caprolactone) arms emanating from an octa-functional porphyrazine core. React Funct Polym 69:705–713CrossRefGoogle Scholar
  27. 27.
    Báez JE, Ramírez-Hernández A, Marcos-Fernández Á (2010) Synthesis, characterization, and degradation of poly(ethylene-b-ε-caprolactone) diblock copolymer. Polym Adv Technol 21:55–64Google Scholar
  28. 28.
    Ramírez-Hernández A, Martínez-Richa A (2010) Ring opening polymerization of ε-Caprolactone initiated by Decamolybdate anion: determination of kinetic and thermodynamic parameters by DSC and 1H-NMR. J Appl Polym Sci 115:2288–2295CrossRefGoogle Scholar
  29. 29.
    He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626CrossRefGoogle Scholar
  30. 30.
    Gómez-Lizárraga K, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C (2017) Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C 79:326–335CrossRefGoogle Scholar
  31. 31.
    Corden TJ, Jones IA, Rudd CD, Christian P, Downes S, McDougall KE (2000) Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomater 21:713–724CrossRefGoogle Scholar
  32. 32.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387CrossRefGoogle Scholar
  33. 33.
    Spěváček J, Brus J, Divers T, Grohens Y (2007) Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur Polym J 43:1866–1875CrossRefGoogle Scholar
  34. 34.
    Yanrong G, Tao D, Pengtao F, Qing Z, Xingmei L, Suojiang Z (2015) Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polym Degrad Stab 117:30–36CrossRefGoogle Scholar
  35. 35.
    Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39:1721–1727CrossRefGoogle Scholar
  36. 36.
    Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF Thermal and thermomechanical behaviour of Polycaprolactone and starch/Polycaprolactone blends for biomedical applications. Macromol Mater Eng 38, 290:792–801CrossRefGoogle Scholar
  37. 37.
    Ramírez-Hernández A, Mata-Mata JL, Aparicio-Saguilán A, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2016) The effect of ethylene glycol on starch-g-PCL graft copolymer synthesis. Starch/starke 68:1148–1157CrossRefGoogle Scholar
  38. 38.
    Ramírez-Hernández A, Aparicio-Saguilán A, Mata-Mata JL, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2017) Chemical modification of banana starch by the in situ polymerization of ϵ-caprolactone in one step. Starch / Stärke 69:1600197CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Karina Espinoza-García
    • 1
  • Angel Marcos-Fernández
    • 2
  • Rodrigo Navarro
    • 2
  • Aurelio Ramírez-Hernández
    • 1
    Email author
  • Jose Eduardo Báez-García
    • 3
  • Gustavo Rangel-Porras
    • 3
  1. 1.Departamento de QuímicaUniversidad del PapaloapanOaxacaMéxico
  2. 2.Instituto de Ciencia y Tecnología de Polímeros (ICTP)MadridEspaña
  3. 3.División de Ciencias Exactas Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMéxico

Personalised recommendations