Devulcanization of natural rubber compounds by extrusion using thermoplastics and characterization of revulcanized compounds

  • Rafael BarbosaEmail author
  • José Donato Ambrósio


Rubber recycling is a subject of high interest, regarding the complexity to develop a feasible method for material recovery without main chain degradation. In this research, Natural Rubber compounds were thermomechanically devulcanized in a continuous way through a co-rotating and intermeshing twin-screw extruder. Four process parameters were evaluated: screw rotation speed, barrel temperature, sulfur concentration and auxiliary thermoplastics (PP or EVA). Devulcanized samples were characterized by their soluble fraction, crosslink density, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR), demonstrating the rising of free natural rubber chains concentration after extrusion. Horikx theory was also used for qualitative analysis. The samples were revulcanized with or without virgin rubber compound addition and characterized by tensile, hardness and dynamic-mechanical tests (DMA). Better mechanical performances were achieved using thermoplastics due to greater second phase incorporation confirmed by scanning electron microscopy (SEM). Compounds extruded with EVA showed even better properties retention, with values around 86% for tensile strength, 110% for elongation at break and 99% for hardness, indicating this material as a promising assistant in vulcanized rubber recycling.


Devulcanization Natural rubber Recycling Twin-screw extruder Ethylene-vinyl acetate (EVA) 



The authors would like to thank PPGCEM/UFSCar and CCDM/UFSCar for the laboratory facilities and technical support.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.


  1. 1.
    Akiba M, Hashim AS (1977). Prog Polym Sci 22:475CrossRefGoogle Scholar
  2. 2.
    Imbernon L, Norvez S (2016) From landfilling to vitrimer chemistry in rubber life cycle. Eur Polym J 82:347–376CrossRefGoogle Scholar
  3. 3.
    Depaolini AR, Bianchi G, Fornai D, Cardelli A, Badalassi M, Cardelli C, Davoli E (2017) Physical and chemical characterization of representative samples of recycled rubber from end-of-life tires. Chemosphere 184:1320–1326CrossRefGoogle Scholar
  4. 4.
    Adhikari B, De D, Maiti S (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25:909–948CrossRefGoogle Scholar
  5. 5.
    Tapale M, Isayev AI (1998) Continuous ultrasonic devulcanization of unfilled NR vulcanizates. J Appl Polym Sci 70:2007–2019CrossRefGoogle Scholar
  6. 6.
    Molanorouzi M, Mohaved SO (2016) Reclaiming waste tire rubber by an irradiation technique. Polym Degrad Stab 128:115–125CrossRefGoogle Scholar
  7. 7.
    Garcia PS, de Sousa FDB, de Lima JA, Cruz AS, Scuracchio CH (2015) Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times. Express Polym Lett 9:1015–1026CrossRefGoogle Scholar
  8. 8.
    Mangili I, Lasagni M, Huang K, Isayev AI (2015) Modeling and optimization of ultrasonic devulcanization using the response surface methodology based on central composite face-centered design. Chemom Intell Lab Syst 144:1–10CrossRefGoogle Scholar
  9. 9.
    Sabzekar M, Pourafshari CM, Mortazavi SM, Kariminejad M, Asadi S, Zohuri G (2015) Influence of process variables on chemical devulcanization of sulfur-cured natural rubber. Polym Degrad Stab 118:88–95CrossRefGoogle Scholar
  10. 10.
    Tao G, He Q, Xia Y, Jia G, Yang H, Ma W (2013) The effect of devulcanization level on mechanical properties of reclaimed rubber by thermal-mechanical shearing devulcanization. J Appl Polym Sci 129:2598–2605CrossRefGoogle Scholar
  11. 11.
    Maridass B, Gupta BR (2004) Performance optimization of a counter rotating twin screw extruder for recycling natural rubber vulcanizates using response surface methodology. Polym Test 23:377–385CrossRefGoogle Scholar
  12. 12.
    Lv X, Huang H, Lv B (2016). J Appl Polym Sci 133:43761Google Scholar
  13. 13.
    Joseph AM, George B, Madhusoodanan KN, Alex R (2016) Effect of devulcanization on crosslink density and crosslink distribution of carbon black filled natural rubber vulcanizates. Rubber Chem Technol 89:653–670CrossRefGoogle Scholar
  14. 14.
    Maridass B (2009). J Polym Res 16:133CrossRefGoogle Scholar
  15. 15.
    Fukumori K, Matsushita M (2003). R&D Review of Toyota CRDL 38:39Google Scholar
  16. 16.
    Myhre M, Saiwari S, Dierkes W, Noordermeer (2012). J Rubber Chem Technol 85:408–449CrossRefGoogle Scholar
  17. 17.
    Zhang Y (2009) US Patent 20090082475Google Scholar
  18. 18.
    Matsushita M (2003) US Patent 6632918 B1Google Scholar
  19. 19.
    Koshy AT, Kuriakose B, Thomas S (1992) Studies on the effect of blend ratio and cure system on the degradation of natural rubber—ethylene-vinyl acetate rubber blends. Polym Degrad Stab 36(2):137–147CrossRefGoogle Scholar
  20. 20.
    Jansen P, Soares BG (1996) Effect of compatibilizer and curing system on the thermal degradation of natural rubber/EVA copolymer blends. Polym Degrad Stab 52(1):95–99CrossRefGoogle Scholar
  21. 21.
    Bhowmick AK, Hall MM, Benarey AH (1994) Rubber products manufacturing technology. Marcel Dekker, New YorkGoogle Scholar
  22. 22.
    Barbosa R, Nunes AT, Ambrosio JD (2017) Devulcanization of natural rubber in composites with distinct crosslink densities by twin-screw extruder. Mater Res 20(2):77–83CrossRefGoogle Scholar
  23. 23.
    Nunes AT, dos Santos RE, Pereira JS, Barbosa R, Ambrósio JD (2018). Prog Rubber Plast Re 34(3):143Google Scholar
  24. 24.
    Flory PJ, Rehner Jr J (1943) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phy 11:521–526CrossRefGoogle Scholar
  25. 25.
    Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871CrossRefGoogle Scholar
  26. 26.
    Horikx MMJ (1965). Polym Sci 19:445CrossRefGoogle Scholar
  27. 27.
    Verbruggen MAL, Does LVD, Dierkes WK, Noordermeer JWM (2016) Experimental validation of the charlesby and horikx models applied to de-vulcanization of sulfur and peroxide vulcanizates of nr and epdm. Rubber Chem Technol 89:671–688CrossRefGoogle Scholar
  28. 28.
    Edwards DW, Danon B, Gryp PVD, Gorgens JF (2016). J Appl Polym Sci 133:43932CrossRefGoogle Scholar
  29. 29.
    Scuracchio CH, Waki DA, Silva MLCPD (2007) Thermal analysis of ground tire rubber devulcanized by microwaves. J Therm Anal Calorim 87:893–897CrossRefGoogle Scholar
  30. 30.
    Kleps T, Piaskiewicz M, Parasiewicz W (2000). J Therm Anal Calorim 60:271–277CrossRefGoogle Scholar
  31. 31.
    Salman MK, Karabay B, Karabay LC, Cihaner A (2016). J Appl Polym Sci 133:43655CrossRefGoogle Scholar
  32. 32.
    Colom X, Faliq A, Formela K, Cañavate (2016). J Polym Test 52:200–208CrossRefGoogle Scholar
  33. 33.
    Rooj S, Basak GC, Maji PK, Bhowmick AK (2011) New route for devulcanization of natural rubber and the properties of devulcanized rubber. J Polym Environ 19:382–390CrossRefGoogle Scholar
  34. 34.
    Gunasekaran S, Natarajan RK, Kala A (2007) FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim Acta Part A 68:323–330CrossRefGoogle Scholar
  35. 35.
    Zhang X, Lu C, Liang M (2008). J Polym Res 16:411CrossRefGoogle Scholar
  36. 36.
    Yao C, Zhao S, Wang Y, Wang B, Wei M, Hu M (2013) Microbial desulfurization of waste latex rubber with Alicyclobacillus sp. Polym Degrad Stab 98:1724–1730CrossRefGoogle Scholar
  37. 37.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier, LondonGoogle Scholar
  38. 38.
    Kumnuantip C, Sombatsompop N (2003) Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends. Mater Lett 57:3167–3174CrossRefGoogle Scholar
  39. 39.
    Sombatsompop N (1999) Dynamic mechanical properties of SBR and EPDM vulcanisates filled with cryogenically pulverized flexible polyurethane foam particles. J Appl Polym Sci 74:1129–1139CrossRefGoogle Scholar
  40. 40.
    Luo M, Liao X, Liao S, Zhao Y (2013) Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol-gel method. J Appl Polym Sci 129:2313–2320CrossRefGoogle Scholar
  41. 41.
    Wei Y, Wu H, Weng G, Zhang Y, Cao X, Gu Z, Liu Y, Liu R, Zhou Z, Nie Y (2018) Effect of interface on bulk polymer: control of glass transition temperature of rubber. J Polym Res 25:173CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Materials Science and Engineering Post-graduation ProgramFederal University of São Carlos – PPGCEM/UFSCarSão CarlosBrazil
  2. 2.Materials Characterization and Development CenterFederal University of São Carlos -CCDM/UFSCarSão CarlosBrazil

Personalised recommendations