Advertisement

Oxygen barrier, free volume and miscibility properties of fully bio-based polyamide 1010/poly(vinyl alcohol) blends

  • Lei Sun
  • Hong-bo Li
  • Ya-qiong Huang
  • Jia-wei Wu
  • James Runt
  • Mu-chen Kuo
  • Kuo-shien Huang
  • Jen-taut YehEmail author
ORIGINAL PAPER

Abstract

Fully bio-based polyamide 1010 (PA1010) was successfully melt-blended with poly (vinyl alcohol) (PVA03, PVA05, PVA08 and PVA14) to prepare PA1010xPVAzy blends. The PA1010xPVA03y, PA1010xPVA05y, PA1010xPVA08y and PA1010xPVA14y films demonstrated the lowest oxygen transmission rates (OTR), free volume fraction (Fv), mean volume of the free volume holes (Vf) and mean number of free volume holes per unit volume (I3) values, when the PVA concentration in each PA1010xPVAzy series reached a corresponding critical value of 22.5, 20, 17.5 and 12.5 wt%, respectively. OTR, Fv, Vf and I3 values obtained for the best PA101087.5PVA1412.5, PA101082.5PVA0817.5, PA101080PVA0520 and PA101077.5PVA032.25 films reduced gradually as the degree of polymerization of PVA reduced. The results of dynamical mechanical and other experimental characterizations demonstrated that PA1010 and PVA are compatible to some extent, when the PVA are ≤ the corresponding critical concentration. The significantly enhanced oxygen permeation resistance and free volume characteristics for optimal PA1010xPVAzy films is at least partly due to the improved hydrogen-bonded molecular interactions between PA1010 C=O groups and PVA O-H groups.

Keywords

Fully Bio-based Polyamide 1010 Poly (vinyl alcohol) Oxygen barrier Free volume Compatibility 

Notes

Acknowledgements

The support from Ministry of Science and Technology, Taiwan (grant MOST104-2221-E-168-018-MY3) is deeply appreciated.

Supplementary material

10965_2019_1819_MOESM1_ESM.docx (195 kb)
ESM 1 (DOCX 195 kb)
10965_2019_1819_MOESM2_ESM.docx (161 kb)
ESM 2 (DOCX 160 kb)
10965_2019_1819_MOESM3_ESM.docx (321 kb)
ESM 3 (DOCX 321 kb)
10965_2019_1819_MOESM4_ESM.docx (489 kb)
ESM 4 (DOCX 489 kb)
10965_2019_1819_MOESM5_ESM.docx (485 kb)
ESM 5 (DOCX 484 kb)
10965_2019_1819_MOESM6_ESM.docx (471 kb)
ESM 6 (DOCX 471 kb)
10965_2019_1819_MOESM7_ESM.docx (315 kb)
ESM 7 (DOCX 314 kb)
10965_2019_1819_MOESM8_ESM.docx (168 kb)
ESM 8 (DOCX 167 kb)
10965_2019_1819_MOESM9_ESM.docx (279 kb)
ESM 9 (DOCX 279 kb)
10965_2019_1819_MOESM10_ESM.docx (286 kb)
ESM 10 (DOCX 285 kb)
10965_2019_1819_MOESM11_ESM.docx (281 kb)
ESM 11 (DOCX 280 kb)
10965_2019_1819_MOESM12_ESM.docx (303 kb)
ESM 12 (DOCX 303 kb)

References

  1. 1.
    Anuar Sharuddin SD, Abnisa F, Wan Dsud MMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326CrossRefGoogle Scholar
  2. 2.
    http://www.plasticseurope.org. Plastics - the Facts 2017. Accessed 5 Jan 2018
  3. 3.
    Kawai F (2006) In: microbial and Eznymatic bioproducts. Springer, Berlin, HeidelbergGoogle Scholar
  4. 4.
    Winnacker M, Rieger B (2016) Biobased Polyamides: Recent Advances in Basic and Applied Research. Rapid Commun 37:1391–1413CrossRefGoogle Scholar
  5. 5.
    Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Res Des 87:1103–1119CrossRefGoogle Scholar
  6. 6.
    Pai FC, Lai SM, Chu HH (2013) Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. J Appl Polym Sci 130:2563–2571CrossRefGoogle Scholar
  7. 7.
    Funk I, Rimmel N, Schorsch C, Sieber V, Schmid J (2017) Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. J Ind Microbiol Biotechnol 44:1491–1502CrossRefGoogle Scholar
  8. 8.
    Dayrit FM (2015) The Properties of Lauric Acid and Their Significance in Coconut Oil. J Am Oil Chem Soc 92:1–15CrossRefGoogle Scholar
  9. 9.
    Green KD, Turner MK, Woodley JM (2000) Candida cloacae oxidation of long-chain fatty acids to dioic acids. Enzym Microb Technol 27:205–211CrossRefGoogle Scholar
  10. 10.
    Koulouri EG, Kallitsis JK (1998) Miscibility behavior of Poly(vinyl alcohol)/Nylon 6 blends and their reactive blending with Poly(ethylene-co-ethyl acrylate). Polymer 39:2373–2379CrossRefGoogle Scholar
  11. 11.
    Lai SM, Liu YH, Huang CT, Huang CT, Don TM (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res 24(7):102–113CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Chen GJ, Xiao M, SJ W (2016) Biodegradable PPC/(PVA-TPU) ternary blend blown films with enhanced mechanical properties. J Polym Res 23(4):80–89CrossRefGoogle Scholar
  13. 13.
    Cui L, Yeh JT, Wang K, Fu Q (2008) Miscibility and isothermal crystallization behavior of polyamide 6/poly(vinyl alcohol) blend. J Polym Sci Polym Phys 46:1360–1368CrossRefGoogle Scholar
  14. 14.
    Cui L, Fu Q, Chang CJ, Qiang C, Chang J, Yeh JT (2009) The effect of poly(vinyl alcohol) hydrolysis on the properties of its blends with nylon 6. Polym Eng Sci 49:1553–1561CrossRefGoogle Scholar
  15. 15.
    Yeh JT, Xu P, Tsai FC (2007) Blending properties of poly(vinyl alcohol) and nylon 6-clay nanocomposite blends. J Mater Sci 42:6590–6599CrossRefGoogle Scholar
  16. 16.
    Griehl W, Ruestem D (1970) Nylon-12-Preparation, Properties, and Applications. Ind Eng Chem 62(3):16–22CrossRefGoogle Scholar
  17. 17.
    Huang YQ, Wu JW, Li G, Li HB, Wang DW, Runt J, Yeh JT (2018) Oxygen barrier, free volume, and blending properties of polyamide 12/poly (vinyl alcohol) blends. Polym Adv Technol 29:1649–1660CrossRefGoogle Scholar
  18. 18.
    Li HB, Wu JW, Huang YQ, Runt J, Huang CM, Huang KS, Yeh JT (2019). J Polym Res In pressGoogle Scholar
  19. 19.
    Wu JW, Huang YQ, Li HB, Runt J, Yeh JT (2018) Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polym Int 67:453–462CrossRefGoogle Scholar
  20. 20.
    Tao SJ (1972) Positronium Annihilation in Molecular Substances. J Chem Phys 56:5499–5410CrossRefGoogle Scholar
  21. 21.
    Nakanishi H, Wang SJ, Jean YC (1988) Positron annihilation in fluids. World Scientific, SingaporeGoogle Scholar
  22. 22.
    Deng Q, Sundar CS, Jean YC (1992) Pressure dependence of free-volume hole properties in an epoxy polymer. J Phys Chem 96:492–495CrossRefGoogle Scholar
  23. 23.
    Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) Positron annihilation in amine-cured epoxy polymers—pressure dependence. J Polym Sci Polym Phys Ed 28:1431–1441CrossRefGoogle Scholar
  24. 24.
    Gao G, Wang JY, Yin JH, Yu XQ, Ma RT, Tang XY, Yin ZH, Zhang XM (2015). J Appl Polym Sci 72:683–688CrossRefGoogle Scholar
  25. 25.
    Probst O, Moore EM, Resasco DE, Grad BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443CrossRefGoogle Scholar
  26. 26.
    Fasihi M, Abolghasemi MR (2012). J Appl Polym Sci 125:2–8CrossRefGoogle Scholar
  27. 27.
    Li Y, Bao YZ, Feng Z, Zhang A (2010). J Appl Polym Sci 83:2749–2754CrossRefGoogle Scholar
  28. 28.
    Holland BJ, Hay JN (2002) The thermal degradation of poly(vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 43:2207–2211CrossRefGoogle Scholar
  29. 29.
    Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42:6775–6783CrossRefGoogle Scholar
  30. 30.
    Chen Z, Huang W, Fang PF, Yu W, Wang SJ, Xiong J, Xu YS (2010) The hydrogen bond and free volume property of poly(ether-urethane) irradiated by neutron. J Polym Sci Polym Phys 48(3):381–388CrossRefGoogle Scholar
  31. 31.
    Cerrada ML, Perez E (1998) Wide-Angle X-ray Diffraction Study of the Phase Behavior of Vinyl Alcohol−Ethylene Copolymers. Macromolecules 31:2559–2564CrossRefGoogle Scholar
  32. 32.
    Liu JJ, Chen GX (2000). Polym Plast Technol Eng 39:529–542CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education, Hubei Key Laboratory of Polymeric Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and EngineeringHubei UniversityWuhanChina
  2. 2.Department of Materials Science and EngineeringPenn State UniversityUniversity ParkUSA
  3. 3.Department of Materials EngineeringKun Shan UniversityTainanTaiwan

Personalised recommendations