Advertisement

Transurethanization reaction as an alternative for melt modification of polyamide 6

  • Lucas Dall AgnolEmail author
  • Hérlon Luiz Ceratti
  • Diana Favero
  • Silvana Pereira Rempel
  • Licia da Silva Alves Schiavo
  • Juliano Roberto Ernzen
  • Fernanda Trindade Gonzalez Dias
  • Otávio BianchiEmail author
ORIGINAL PAPER
  • 7 Downloads

Abstract

This work presents an interesting alternative for melt modification of polyamide 6 (PA6). Transurethanization was employed as an effective strategy for this purpose. At high temperatures (>160 °C), the dissociation of urethane groups and subsequent reaction with PA6 end groups result in chain grown. The effect of TPU incorporation (2–10 wt.%) into PA6 on the microstructure, rheology, and thermal and mechanical performance of PA6/TPU blends was investigated. The chemical reactions between PA6 and TPU were elucidated using a model reaction of amino acid and MDI. The phase morphology of the blends did not show defined phases of TPU. However, it was noticed the formation of micrometric pores. Both the melting temperature and crystallinity of neat PA6 decreased with TPU incorporation. The production of a copolymer by terminal group reactions hinders the crystallization of polyamide with the reduction of nucleation and crystal growth. The increase in molar mass of PA6 can be confirmed by rheological measurements, in which an abrupt increase in viscosity was noted, as well as in the storage modulus. The impact strength of the blends significantly increased with the addition of TPU, whereas a discrete decrease occurred for the elastic modulus and tensile strength.

Keywords

Polyamide 6/thermoplastic polyurethane blend Transurethanization Reactive extrusion Intermeshing co-rotating twin-screw extrusion Kinetics of crystallization 

Notes

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for financial support (Grant 308241/2015-0) and the Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - (Finance Code 001) for scholarships. The authors also thank Mantoflex Industria de Plásticos Ltda for the donation of the polymers, Laboratório Central de Microscopia Prof. Israel Baumvol for the FEG-SEM analysis, and Carlos Romoaldo and Debora Guerra for help with mechanical testing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lozano-González MJ, Rodriguez-Hernandez MT, Gonzalez-De Los Santos EA, Villalpando-Olmos J (2000) Physical–mechanical properties and morphological study on nylon-6 recycling by injection molding. J Appl Polym Sci 76(6):851–858CrossRefGoogle Scholar
  2. 2.
    Li HB, Wu JW, Huang YQ, Runt J, Huang CM, Huang KS, Yeh JT (2018) Properties of polyamide 612/poly (vinyl alcohol) blends and their impact on free volume and oxygen barrier properties. J Polym Res 25(9):195CrossRefGoogle Scholar
  3. 3.
    Goitisolo I, Eguiazábal JI, Nazábal J (2008) Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polym Degrad Stab 93(10):1747–1752CrossRefGoogle Scholar
  4. 4.
    Hou LL, Liu HZ, Yang GS (2006) A novel approach to the preparation of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ε-caprolactam. Polym Int 55(6):643–649CrossRefGoogle Scholar
  5. 5.
    Bondan F, Ernzen JR, Amalvy J, Machado AV, Martins JDN, Bianchi O (2016) Influence of dynamic crosslinking on the morphology, crystallization, and dynamic mechanical properties of PA6,12/EVA blends. J Appl Polym Sci 133(46):44206 (44212p)CrossRefGoogle Scholar
  6. 6.
    Hou L, Liu H, Yang G (2006) Preparation and characterization of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ϵ-caprolactam. Polym Eng Sci 46(9):1196–1203CrossRefGoogle Scholar
  7. 7.
    Zhou S, Huang J, Zhang Q (2014) Mechanical and tribological properties of polyamide-based composites modified by thermoplastic polyurethane. J Thermoplast Compos Mater 27(1):18–34CrossRefGoogle Scholar
  8. 8.
    Yi C, Peng Z, Wang H, Li M, Wang C (2011) Synthesis and characteristics of thermoplastic elastomer based on polyamide-6. Polym Int 60(12):1728–1736CrossRefGoogle Scholar
  9. 9.
    Genovese A, Shanks RA (2001) Simulation of the specific interactions between polyamide-6 and a thermoplastic polyurethane. Comput Theor Polymer Sci 11(1):57–62CrossRefGoogle Scholar
  10. 10.
    GunaSingh C, Soundararajan S, Palanivelu K (2013) Studies on mechanical, thermal properties and characterization of nanocomposites of nylon-6–thermoplastics poly urethane rubber [TPUR] blend. IOSR J Appl Chem 4(1):65–75CrossRefGoogle Scholar
  11. 11.
    Rätzsch M, Haudel G, Pompe G, Meyer E (1990) Interaction between polymers. J Macromol Sci A 27(13–14):1631–1655Google Scholar
  12. 12.
    Haponiuk J, Balas A (1995) Thermal properties of polyamide 6/polyurethane blends. J Therm Anal Calorim 43(1):211–214CrossRefGoogle Scholar
  13. 13.
    Hentschel T, Münstedt H (2001) Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 42(7):3195–3203CrossRefGoogle Scholar
  14. 14.
    Deepa P, Jayakannan M (2008) Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J Polym Sci A Polym Chem 46(7):2445–2458CrossRefGoogle Scholar
  15. 15.
    Puaux JP, Cassagnau P, Bozga G, Nagy I (2006) Modeling of polyurethane synthesis by reactive extrusion. Chem Eng Process 45(6):481–487CrossRefGoogle Scholar
  16. 16.
    Lu QW, Hoye TR, Macosko CW (2002) Reactivity of common functional groups with urethanes: models for reactive compatibilization of thermoplastic polyurethane blends. J Polym Sci A Polym Chem 40(14):2310–2328CrossRefGoogle Scholar
  17. 17.
    Shi X, Zhang J, Jin J, Chen S (2008) Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett 2(9):623–629CrossRefGoogle Scholar
  18. 18.
    Chiang C-R, Chang F-C (1997) Polymer blends of polyamide-6 (PA6) and poly (phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38(19):4807–4817CrossRefGoogle Scholar
  19. 19.
    Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. ElsevierGoogle Scholar
  20. 20.
    Wu Q, Liu X, Berglund LA (2002) FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer 43(8):2445–2449CrossRefGoogle Scholar
  21. 21.
    Kong W, Yang Y, Liu Z, Lei J (2017) Structure-property relations of novel polyamide-6 elastomers prepared through reactive processing. J Polym Res 24(10):168CrossRefGoogle Scholar
  22. 22.
    Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34(18):6431–6437CrossRefGoogle Scholar
  23. 23.
    Seymour R, Estes G, Cooper SL (1970) Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules 3(5):579–583CrossRefGoogle Scholar
  24. 24.
    Skrockienė V, Žukienė K, Jankauskaitė V, Baltušnikas A, Petraitienė S (2016) Properties of mechanically recycled polycaprolactone-based thermoplastic polyurethane/polycaprolactone blends and their nanocomposites. J Elastom Plast 48(3):266–286CrossRefGoogle Scholar
  25. 25.
    Franke C, Pötschke P, Rätzsch M, Pompe G, Sahre K, Voigt D, Janke A (1993) Wirkung von Diisocyanat als reaktiver Koppler in TPU/PA6-Blends. Angew Makromol Chem 206(1):21–38CrossRefGoogle Scholar
  26. 26.
    Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2′-bis(2-oxazoline). Polymer 43(1):3–10CrossRefGoogle Scholar
  27. 27.
    Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules 37(3):877–881CrossRefGoogle Scholar
  28. 28.
    Zo HJ, Joo SH, Kim T, Seo PS, Kim JH, Park JS (2014) Enhanced mechanical and thermal properties of carbon fiber composites with polyamide and thermoplastic polyurethane blends. Fiber Polym 15(5):1071–1077CrossRefGoogle Scholar
  29. 29.
    Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959CrossRefGoogle Scholar
  30. 30.
    Guo B, Zuo Q, Lei Y, Du M, Liu M, Jia D (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1–2):48–56CrossRefGoogle Scholar
  31. 31.
    Liu Y, Yang G (2010) Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim Acta 500(1–2):13–20CrossRefGoogle Scholar
  32. 32.
    Haponiuk J (2000) Phase transitions of polyamide 6/polyurethane blends compatibilized by copolyurethaneamides. J Therm Anal Calorim 60(1):45–52CrossRefGoogle Scholar
  33. 33.
    Nadkarni VM, Bulakh NN, Jog JP (1993) Assessing polymer crystallizability from nonisothermal crystallization behavior. Adv Polym Technol 12(1):73–79CrossRefGoogle Scholar
  34. 34.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J polym sci C: Polym symp 6(1):183–195CrossRefGoogle Scholar
  35. 35.
    Li W, Liu J, Zhang X, Zhao Y, Wang D (2012) Synergetic effect of polyamide 1212 and diisocyanate on performance improving of thermoplastic polyurethane via melt compounding. J Appl Polym Sci 125(2):1077–1083CrossRefGoogle Scholar
  36. 36.
    Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the nonisothermal crystallization of a polymer melt. Macromol Rapid Commun 23(13):766–770CrossRefGoogle Scholar
  37. 37.
    Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107(3):882–888CrossRefGoogle Scholar
  38. 38.
    Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25(6):733–738CrossRefGoogle Scholar
  39. 39.
    Chan TW, Isayev AI (1994) Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci 34(6):461–471CrossRefGoogle Scholar
  40. 40.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441CrossRefGoogle Scholar
  41. 41.
    Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168CrossRefGoogle Scholar
  42. 42.
    Huang JW, Chang CC, Kang CC, Yeh MY (2008) Crystallization kinetics and nucleation parameters of nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta 468(1–2):66–74CrossRefGoogle Scholar
  43. 43.
    Lauritzen Jr JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352CrossRefGoogle Scholar
  44. 44.
    Lonkar SP, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer 50(6):1505–1515CrossRefGoogle Scholar
  45. 45.
    Tsanaktsis V, Bikiaris DN, Guigo N, Exarhopoulos S, Papageorgiou DG, Sbirrazzuoli N, Papageorgiou GZ (2015) Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid. RSC Adv 5(91):74592–74604CrossRefGoogle Scholar
  46. 46.
    Ferreira CI, Bianchi O, Oviedo MAS, Oliveira RVBD, Mauler RS (2013) Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites. Polímeros 23(4):456–461CrossRefGoogle Scholar
  47. 47.
    Bianchi O, Júnior HLO, Canto LB, Mauler RS, de Oliveira RVB (2016) Viscoelastic properties of PS–POSS hybrid materials prepared by reactive processing. Polym Test 54:159–167CrossRefGoogle Scholar
  48. 48.
    Cox W, Merz E (1959) Rheology of polymer melts – a correlation of dynamic and steady flow measurements. In: International symposium on plastics testing and standardization. ASTM InternationalGoogle Scholar
  49. 49.
    Liu Y, Li S-C, Liu H (2013) Melt rheological properties of LLDPE/PP blends compatibilized by cross-linked LLDPE/PP blends (LLDPE-PP). Polym Plast Technol Eng 52(8):841–846CrossRefGoogle Scholar
  50. 50.
    do Amaral FCN, Ernzen JR, Fiorio R, Martins JDN, Dias FTG, Avolio R, Bianchi O (2018) Effect of the partially hydrolyzed EVA-h content on the morphology, rheology, and mechanical properties of PA12/EVA blends. Polym Eng Sci 58(3):335–344CrossRefGoogle Scholar
  51. 51.
    Piao H, Kiryu Y, Chen L, Yamashita S, Ohsawa I, Takahashi J (2019) Influence of water absorption on the mechanical properties of discontinuous carbon fiber reinforced polyamide 6. J Polym Res 26(3):63CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Materials Science and Engineering (PGMAT)University of Caxias do sul (UCS)Caxias do SulBrazil
  2. 2.Mantoflex Indústria de Plásticos LtdaCaxias do SulBrazil

Personalised recommendations