Advertisement

Synthesis and characterization of polypropylene grafted with p- hydroxy-N-phenyl maleimide

  • Marwa E. Mohamed
  • Gamal R. SaadEmail author
  • Alaa I. Eid
  • Olfat E. Elazabawy
  • Osama A. Elenien
  • Magdi M. Naoum
  • Malak T. Abou El-khair
ORIGINAL PAPER
  • 73 Downloads

Abstract

Polypropylene (PP) grafted with p-hydroxy-N-phenyl maleimide (pHPMA) was prepared by melt reactive extrusion in a twin screw extruder in presence of dicumyl peroxide as initiator. The content of pHPMA was varied from 1.0 up to 4.0 wt%. The grafted PP was characterized by FTIR, melt flow index (MFI), contact angle measurements, mechanical testing and thermogravimetric analysis (TGA). The non-isothermal crystallization kinetics of the neat PP and grafted PP were investigated using differential scanning calorimetry. The results showed that the MFI of the grafted PP (PP-g-pHPMA) was higher than that of PP homopolymer. The contact angle of the grafted PP was found to be decreased by increasing the monomer percent up to 3.0 wt%. Further increase of the monomer leads to an increase in the contact angle which may be attributed to the non-homogeneous distribution of the pHPMA grafted chains onto the PP surface. The thermal stability was enhanced by increasing the content of pHPMA. Grafting has not significantly affected either the tensile strength or elongation at a break point. A noticeable change in crystallization behavior of PP matrix has been observed upon grafting.

Keywords

Polypropylene 4-Hydroxy phenylmaleimide Reactive grafting Contact angle Thermal stability Non-isothermal crystallization 

Notes

References

  1. 1.
    Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814CrossRefGoogle Scholar
  2. 2.
    Abudonia KS, Saad GR, Naguib HF, Eweis M, Zahran D, Elsabee MZ (2018) Surface modification of polypropylene film by grafting with vinyl monomers for the attachment of chitosan. J Polym Res 25:125CrossRefGoogle Scholar
  3. 3.
    Wang Y, Ni Q, Liu Z, Zou J, Zhu X (2011) Grafting modification and properties of polypropylene with pentaerythritol tetra-acrylate. J Polym Res 18:2185–2193CrossRefGoogle Scholar
  4. 4.
    Wang H, Wei J, Li S, Chen Y, Ren Z, Qiu S (2013) Preparation and characterization of acrylic acid(AA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) grafted polypropylene by two-steps electron beam irradiation for filtration of cigarette smoke. J Polym Res 20:44CrossRefGoogle Scholar
  5. 5.
    Wang H, Wei J, Li S, Chen Y, Ren Z (2013) Qiu S (2013) preparation and characterization of acrylic acid(AA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) grafted polypropylene by two-steps electron beam irradiation for filtration of cigarette smoke. J Polym Res 20:44CrossRefGoogle Scholar
  6. 6.
    Wei X, Wu S (2013) Preparation of novel PP-g-BMA sorbent by two-step irradiation method for elimination of homopolymerization in grafting process. J Polym Res 20:292CrossRefGoogle Scholar
  7. 7.
    Kong Z, Wu X, Wei J, Zhang H, Cui L (2016) Preparation and characterization of hydrophilicity fibers based on 2-(dimethyamino)ethyl mathacrylate grafted polypropylene by UV- irradiation for removal of Cr(VI) and as(V) J Polym res 23:199Google Scholar
  8. 8.
    Krause-Sammartino LE, Lucas JC, Reboredo MM, Aranguren MI (2013) Maleic anhydride grafting of polypropylene: peroxide and solvent effects. Plast Rubber Compos 35:117–123CrossRefGoogle Scholar
  9. 9.
    García-MartínezJM LO, Collar EP (1998) Chemical modification of polypropylenes by maleic anhydride: influence of Stereospecificity and process conditions. J Appl Polym Sci 68:483–495CrossRefGoogle Scholar
  10. 10.
    Rengarajan R, ParameswaranV R, Vicic M, Lee S, Rinaldi PL (1990) N.M.R analysis of polypropylene- maleic anhydride copolymer. Polymer 31:1703–1706CrossRefGoogle Scholar
  11. 11.
    Qian J, Huang Z, Dang S, Xu Y(2011) Improvements of polypropylene grafted maleic anhydride with ultrasonication, pre-irradiation and co-irradiation methods. J Polym Res18:1557–1565CrossRefGoogle Scholar
  12. 12.
    GüldoğanY ES, Rzaev ZMO, Pişkin E (2004) Comparison of maleic anhydride grafting onto powder and granular polypropylene in the melt by reactive extrusion. J Appl Polym Sci 92:3675–3684CrossRefGoogle Scholar
  13. 13.
    Burton E L, Woodhead M, Coates P, GoughT (2010) Reactive grafting of glycidyl methacrylate onto polypropylene. J Appl Polym Sci 117:2707–2714Google Scholar
  14. 14.
    Berzin F, Flat JJ, Vergnes B (2013) Grafting of maleic anhydride on polypropylene by reactive extrusion: effect of maleic anhydride and peroxide concentrations on reaction yield and products characteristics. J Polym Eng 33:673–682CrossRefGoogle Scholar
  15. 15.
    Khunova V, Zamorsky Z (1993) Studies on the effect of reactive polypropylene on the properties of filled polyolefin composites, part I. Advantages of solid-phase-grafted maleated polypropylene over melt-phase-modified polymers. Polym-Plast Techn Eng 32:289–298CrossRefGoogle Scholar
  16. 16.
    Hu GH, Flat JJ, Lambla M (1993) Exchange and free radical grafting reactions in reactive extrusion. Macromol Symp 75:137–157CrossRefGoogle Scholar
  17. 17.
    Ho RM, Su AC, Wu CH, Chen SI (1993) Functionalization of polypropylene via melt mixing. Polymer 34:3264–3269CrossRefGoogle Scholar
  18. 18.
    Bettini SHP, Agnelli JAM (1999) Grafting of maleic anhydride onto polypropylene by reactive processing. I Effect of maleic anhydride and peroxide concentrations on the reaction J Appl Polym Sci 74:247–255Google Scholar
  19. 19.
    Oromiehie A, Ebadi-Dehaghan H, Mirbagheri S (2014) Chemical modification of polypropylene by maleic anhydride: melt grafting, characterization and mechanism. Int J Chem Engin Appl 5:117–122Google Scholar
  20. 20.
    Cao K, Shen Z, Yao Z, Wei B, Pang X, Lu Z, Yan L, Chen Z (2009) New insight into the action of supercritical carbon dioxide for grafting of maleic anhydride onto isotactic polypropylene by reactive extrusion. Chem Eng Sci 65:1621–1626CrossRefGoogle Scholar
  21. 21.
    Baker W, Scott C, Hu GH (1999) Synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142CrossRefGoogle Scholar
  22. 22.
    LiY XXM, Guo BH (2001) Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 42:3419–3424CrossRefGoogle Scholar
  23. 23.
    Elsabee MZ, Sabaa MW, Naguib HF, Furuhata K (1987) Copolymerization of methyl methacrylate with N-Phenylmaleimide in different solvents. J Macrom Sci PartA-Chem 24:1207–1221CrossRefGoogle Scholar
  24. 24.
    Matsumoto A, Kubota T, Otsu T (1990) Radical polymerization of N-(alkyl-substituted phenyl)maleimides: synthesis of thermally stable polymers soluble in nonpolar solvents. Macromolecules 23:4508–4513CrossRefGoogle Scholar
  25. 25.
    Onimura K, Matsushima M, Yamabuki K, Oishi T (2010) Synthesis and properties of N-substituted maleimides conjugated with 1,4-phenylene or 2,5-thienylene polymers. Polym J 42:290–297CrossRefGoogle Scholar
  26. 26.
    CavaMP DAA, Muth Kand Mitchell M (1961) N-phenylmaleimide. J Organ Syn 41:93–95CrossRefGoogle Scholar
  27. 27.
    Mokhtar SM, Mostafa TB (2000) Gama radiation-induced graft copolymerization of N-p-hydroxyphenylmaleimide onto polypropylene films. J Polym Res 7(4):215–219CrossRefGoogle Scholar
  28. 28.
    Ahmed I, Mustapha A (2010) Synthesis of new azo compounds based on N-(4- Hydroxypheneyl)maleimide and N-(4-Methylpheneyl)maleimide. Molecules 15:7498–7508CrossRefGoogle Scholar
  29. 29.
    Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142CrossRefGoogle Scholar
  30. 30.
    Boaen NK, Hillmyer MA (2005) Post-polymerization functionalization of polyolefins. Chem Soc Rev 34:267–275CrossRefGoogle Scholar
  31. 31.
    Sanchez-Valdes S, Guerrero-Salazar C, Ramosde Valle LF, Lopez-Quintanilla M, Yasfiez-Flores I, Orona-Villarreal F, Ramirez-Vergas R (1997) Characterization of LLDPE-LLDPEgMA blends by contact angle and FTIR-ATR studies. J Polym Eng 17:257–267Google Scholar
  32. 32.
    Kubota H (1993) Photografting of acrylonitrile and Methacrylic acid on polyethylene film under air atmosphere. J Appl Polym Sci 48:1717–1721CrossRefGoogle Scholar
  33. 33.
    Liu G, Li X, Zhang L, Qu X, Liu P, Yang L, Gao J (2002) Thermal analysis of solution copolymers of styrene with N-Phenylmaleimide. J Appl Polym Sci 83:417–422CrossRefGoogle Scholar
  34. 34.
    Yang P, Ratcliffe LBD, Armes SP (2013) Efficient synthesis of poly(methacrylic acid)-block-poly(styrene-alt-N-phenylmaleimide) Diblock copolymer lamellae using RAFT dispersion polymerization. Macromolecules 46:8545–8556CrossRefGoogle Scholar
  35. 35.
    Liu C, Wei D, Zheng A, Li Y, Xiao H (2006) Improving Foamability of polypropylene by grafting modification. J Appl Polym Sci 101:4114–4123CrossRefGoogle Scholar
  36. 36.
    Brandrup S, Immergut EH (1975) Polymer handbook. New York: Interscience 5:24Google Scholar
  37. 37.
    Wang Y, Mingtao Run M (2009) Non-isothermal crystallization kinetic and compatibility of PTT/PP blends by using maleic anhydride grafted polypropylene as compatibilizer. J Polym Res 16:725–737CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Yu F, Yu W, Zhang H (2015) Non-isothermal crystallization behavior of dynamically vulcanized long chain branched polypropylene/ethylene-propylene-diene monomer blends. J Polym Res 22:198CrossRefGoogle Scholar
  39. 39.
    Yuan Q, Awate S, Misra RDK (2006) Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:1994–2003CrossRefGoogle Scholar
  40. 40.
    LiuWJ YHL, WangZ DLSLJJ (2002) Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci 86:2145–2152CrossRefGoogle Scholar
  41. 41.
    Ziabicki A (1974) Theoretical analysis of oriented and non-isothermal crystallization. Colloid Polym Sci 252:433–447CrossRefGoogle Scholar
  42. 42.
    Yu J, He J (2000) Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer 41:891–898CrossRefGoogle Scholar
  43. 43.
    Avrami M (1940) Kinetics of phase change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  44. 44.
    Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.S.C. Polymer 19:1142–1144CrossRefGoogle Scholar
  45. 45.
    Sathe SN, Rao GSS, Devi S (1994) Grafting of maleic anhydride onto polypropylene: synthesis and characterization. J Appl Polym Sci 53:239–245CrossRefGoogle Scholar
  46. 46.
    Lui H, Wang Q (2000) Solid phase grafting of Hydroxymethyl acrylamide onto polypropylene through Pan milling. J Appl Polym Sci 78:2191–2197CrossRefGoogle Scholar
  47. 47.
    Lorenzo MD, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24:917–950CrossRefGoogle Scholar
  48. 48.
    Nandi S, Ghosh AK (2007) Crystallization kinetics of impact modified polypropylene. J Polym Res 14:387–396CrossRefGoogle Scholar
  49. 49.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic J Polym Sci Polym Symbosia banner 6:183–195Google Scholar
  50. 50.
    Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the non-isothermal crystallization of a polymer melts. Macromol Rapd Commun 23:766–770CrossRefGoogle Scholar
  51. 51.
    Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107:882–888CrossRefGoogle Scholar
  52. 52.
    Vyazovkin S, Dranca I (2006) Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys 207:20–25CrossRefGoogle Scholar
  53. 53.
    Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Composite Lab., Advanced Material DivisionCentral Metallurgical Research and Development InstituteCairoEgypt
  2. 2.Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Petroleum application DepartmentPetroleum Research InstituteGizaEgypt

Personalised recommendations