Advertisement

Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach

  • Shanxin XiongEmail author
  • Xiangkai Zhang
  • Ru Wang
  • Yizhang Lu
  • Haifu Li
  • Jian Liu
  • Shuai Li
  • Zhu Qiu
  • Bohua Wu
  • Jia Chu
  • Xiaoqin Wang
  • Runlan Zhang
  • Ming Gong
  • Zhenming Chen
ORIGINAL PAPER
  • 104 Downloads

Abstract

In this paper, the covalently bonded polyaniline (PANI) nanofiber/multi-walled carbon nanotubes (MWCNT) composites were synthesized via interfacial polymerization of aniline with para-phenylenediamine functionalized MWCNT at the interface of oil/water system. Owing to the diffusion-controlled growth process of PANI, PANI with uniform fiber structure were obtained. The morphology analysis showed that the diameter of PANI nanofiber decreased with the increasing of MWCNT loading amount. Impedance analysis showed that the charge-transfer resistances of the composites were reduced also with the increasing of MWCNT loading amount. The decreasing of charge-transfer resistances and change of morphology resulted in enhanced capacitive properties. Electrochemical tests showed that the specific capacitance of PANI, PANI/MWCNT-10% and PANI/MWCNT-20% were 405, 641 and 764 F·g-1, respectively. As comparison with pure PANI nanofiber, the specific capacitance of the composites increased by 58% and 88.6%, respectively.

Keywords

Polyaniline nanofiber Carbon nanotubes Interfacial polymerization Supercapacitor 

Notes

Acknowledgments

This work was supported by Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201804) and Natural Science Foundation of Shaanxi Province, China (2018JM5027).

References

  1. 1.
    Bogue R (2013) Powering tomorrow's sensor: a review of technologies – Part 1. Sens. Rev. 30:271–275CrossRefGoogle Scholar
  2. 2.
    Vangari M, Pryor T, Jiang L (2013) Supercapacitors: Review of Materials and Fabrication Methods. Journal of Energy Engineering 139:72–79CrossRefGoogle Scholar
  3. 3.
    Kandasamy SK, Kandasamy K (2018) Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review. Journal of Inorganic & Organometallic Polymers & Materials:1–26Google Scholar
  4. 4.
    Salunkhe RR, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni (OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218CrossRefGoogle Scholar
  5. 5.
    Tang J, Salunkhe RR, Liu J et al (2015) Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 137:1572CrossRefGoogle Scholar
  6. 6.
    Salunkhe RR, Tang J, Kamachi Y et al (2015) Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. Acs Nano 9:6288–6296CrossRefGoogle Scholar
  7. 7.
    Wang Y, Guo J, Wang T et al (2015) Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 5:1667–1689CrossRefGoogle Scholar
  8. 8.
    Meng Q, Cai K, Chen Y et al (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36CrossRefGoogle Scholar
  9. 9.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196:1–12CrossRefGoogle Scholar
  10. 10.
    Bélanger D, Ren X, Davey J et al (2000) Characterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors. J. Electrochem. Soc. 147:2923–2929CrossRefGoogle Scholar
  11. 11.
    Xiong S, Yang F, Jiang H et al (2012) Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85:235–242CrossRefGoogle Scholar
  12. 12.
    Xiong S, Shi Y, Jia C et al (2014) Preparation of High-performance Covalently Bonded Polyaniline Nanorods/Graphene Supercapacitor Electrode Materials using Interfacial Copolymerization Approach. Electrochim. Acta 127:139–145CrossRefGoogle Scholar
  13. 13.
    Zhang X, Meng X, Wang Q et al (2018) Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor. Mater. Lett. 217:312–315CrossRefGoogle Scholar
  14. 14.
    Pang S, Chen W, Yang Z et al (2017) Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers 9:510CrossRefGoogle Scholar
  15. 15.
    Zhou SX, Tao XY, Ma J et al (2017) Facile synthesis of self-assembled polyaniline nanorods doped with sulphuric acid for high-performance supercapacitors. Vacuum 143Google Scholar
  16. 16.
    Roy A, Ray A, Saha S et al (2018) Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite. Int. J. Hydrogen Energy 43CrossRefGoogle Scholar
  17. 17.
    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  18. 18.
    He X, Liu G, Yan B et al (2016) Significant enhancement of electrochemical behaviour by incorporation of carboxyl group functionalized carbon nanotubes into polyaniline based supercapacitor. Eur. Polym. J. 83:53–59CrossRefGoogle Scholar
  19. 19.
    Otrokhov G, Pankratov D, Shumakovich G et al (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim. Acta 123:151–157CrossRefGoogle Scholar
  20. 20.
    Male U, Bo KS, Huh DS (2017) Synthesis and characterization of polyaniline-grafted CNT as electrode materials for supercapacitors. Macromolecular Research 25:1–8CrossRefGoogle Scholar
  21. 21.
    Du P, Lin L, Wang H et al (2017) Fabrication of porous polyaniline modified MWNTs core-shell structure for high performance supercapacitors with high rate capability. Materials & Design 127:76–83CrossRefGoogle Scholar
  22. 22.
    Ramana GV, Srikanth VVSS, Padya B et al (2014) Carbon nanotube–polyaniline nanotube core–shell structures for electrochemical applications. Eur. Polym. J. 57:137–142CrossRefGoogle Scholar
  23. 23.
    Xiong S, Wei J, Jia P et al (2011) Water-processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. Acs Applied Materials & Interfaces 3:782CrossRefGoogle Scholar
  24. 24.
    Xiong S, Yang F, Ding G et al (2012) Covalent bonding of polyaniline on fullerene: Enhanced electrical, ionic conductivities and electrochromic performances. Electrochim. Acta 67:194–200CrossRefGoogle Scholar
  25. 25.
    Peikertová P, Kulhánková L, Neuwirthová L et al (2016) Raman study of PANI thin film during long time period in dependence on storage conditions. Chemical Papers 71:379–385.  https://doi.org/10.1007/s11696-016-0078-3 CrossRefGoogle Scholar
  26. 26.
    Liu MC, Kong LB, Lu C et al (2012) Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Adv. 2:1890–1896CrossRefGoogle Scholar
  27. 27.
    Lin K-M, Chang K-H, Hu C-C et al (2009) Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density. Electrochim. Acta 54:4574–4581.  https://doi.org/10.1016/j.electacta.2009.03.058 CrossRefGoogle Scholar
  28. 28.
    Chang WM, Wang CC, Chen CY (2016) Plasma-Induced Polyaniline Grafted on Carbon Nanotube-embedded Carbon Nanofibers for High-Performance Supercapacitors. Electrochim. Acta 212:130–140.  https://doi.org/10.1016/j.electacta.2016.06.159 CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Shanxin Xiong
    • 1
    • 2
    Email author
  • Xiangkai Zhang
    • 1
  • Ru Wang
    • 1
  • Yizhang Lu
    • 1
  • Haifu Li
    • 1
  • Jian Liu
    • 1
  • Shuai Li
    • 1
  • Zhu Qiu
    • 1
  • Bohua Wu
    • 1
  • Jia Chu
    • 1
  • Xiaoqin Wang
    • 1
  • Runlan Zhang
    • 1
  • Ming Gong
    • 1
  • Zhenming Chen
    • 2
  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive UtilizationHezhou UniversityHezhouPeople’s Republic of China

Personalised recommendations