Advertisement

Enhancing the performances of polybenzoxazines by modulating hydrogen bonds

  • Xiaosheng Luan
  • Bin Wang
  • Po YangEmail author
  • Yi GuEmail author
ORIGINAL PAPER
  • 80 Downloads

Abstract

This work aims at enhancing the performances of polybenzoxazines by increasing crosslink density through introducing hydrogen bond acceptor. Additional hydrogen bond acceptor, such as 4,4′-bipyridine (Bpy), not only decreases the polymerization temperatures of bisphenol A based benzoxazines, but also modulates the hydrogen bonds. After introducing Bpy, the formation of Type I -OH···N hydrogen bonds is suppressed, while Type II -OH···N hydrogen bonds form between polybenzoxazines and Bpy. The decrease of Type I -OH···N hydrogen bonds is beneficial to the polymerization and increases the crosslink density, which improve the properties of polybenzoxazines. And the results show that, compared with neat resin, the char yield, tensile strength and toughness of the blends are enhanced. We believe this novel insight into the roles of hydrogen bonds is anticipated to help researchers explore more polybenzoxazines with excellent mechanical properties.

Keywords

Polybenzoxazine 4,4′-bipyridine Hydrogen bonds Crosslink density Mechanical properties Thermal stability 

Notes

Acknowledgements

This work is supported by the National Science Foundation of China (Project No. 21204053) and Outstanding Youth Foundation of Sichuan University (Project No. 2015SCU04A07).

Supplementary material

10965_2019_1741_MOESM1_ESM.docx (101.2 mb)
ESM 1 (DOCX 103677 kb)

References

  1. 1.
    Burke WJ (1949) 3,4-Dihydro-1,3,2H-Benzoxazin es. Reaction of p-substituted phenols with N,N-Dimethylolamines. J Am Chem Soc 71:609–612CrossRefGoogle Scholar
  2. 2.
    Burke WJ, Smith R, Weatherbee C (1952) N,N-Bis-(hydroxybenzyl)-amines: synthesis from phenols, formaldehyde and primary amines. J Am Chem Soc 74:602–605CrossRefGoogle Scholar
  3. 3.
    Ishida H, Low HY (1997) A study on the volumetric expansion of Benzoxazine-based phenolic resin. Macromolecules 30:1099–1106CrossRefGoogle Scholar
  4. 4.
    Ishida H, Allen DJ (1996a) Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci Polym Phys 34:1019–1030CrossRefGoogle Scholar
  5. 5.
    Yang P, Gu Y (2012) Synthesis of a novel benzoxazine-containing benzoxazole structure and its high performance thermoset. J Appl Polym Sci 124:2415–2422CrossRefGoogle Scholar
  6. 6.
    Yang P, Wang X, Fan H, Gu Y (2013) Effect of hydrogen bonds on the modulus of bulk polybenzoxazines in the glassy state. Phys Chem Chem Phys 15:15333–15338CrossRefGoogle Scholar
  7. 7.
    Shen SB, Ishida H (1996) Development and characterization of high-performance polybenzoxazine composites. PolymCompos 17:710–719Google Scholar
  8. 8.
    Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine. J Therm Anal Calorim 116:435–446CrossRefGoogle Scholar
  9. 9.
    Yang P, Wang X, Gu Y (2012) Copolymers of phenolphthalein-aniline-based benzoxazine and biphenyl epoxy: curing behavior and thermal and mechanical properties. J Polym Res 19:9901Google Scholar
  10. 10.
    Ran QC, Zhang DX, Zhu RQ, Gu Y (2012) The structural transformation during polymerization of benzoxazine/FeCl 3 and the effect on the thermal stability. Polymer 53:4119–4127CrossRefGoogle Scholar
  11. 11.
    Xiang H, Ling H, Wang L, Song L, Gu Y (2005) A novel high performance RTM resin based on benzoxazine. Polym Compos 26:563–571CrossRefGoogle Scholar
  12. 12.
    Liao CS, Wang CF, Lin HC, Chou HY, Chang FC (2008) Tuning the surface free energy of Polybenzoxazine thin films. J Phys Chem C 112:16189–16191CrossRefGoogle Scholar
  13. 13.
    Hu WH, Huang KW, Kuo SW (2012) Heteronucleobase-functionalized benzoxazine: synthesis, thermal properties, and self-assembled structure formed through multiple hydrogen bonding interactions. Polym Chem 3:1546–1554CrossRefGoogle Scholar
  14. 14.
    Xia YQ, Yang P, Yu M, Zhang CL, Gu Y (2015) Blends of sulfonated polysulfone/polysulfone/4,4′-diaminodiphenyl methane-based benzoxazine: multiphase structures and properties. Polym Int 64:118–125CrossRefGoogle Scholar
  15. 15.
    Xia YQ, Yang P, Zhu RQ, Zhang CL, Gu Y (2014) Blends of 4,4′-diaminodiphenyl methane-based benzoxazine and polysulfone: morphologies and properties. J Polym Res 21:387Google Scholar
  16. 16.
    Calò E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754–759CrossRefGoogle Scholar
  17. 17.
    Demir KD, Kiskan B, Yagci Y (2011) Thermally curable acetylene-containing Main-chain Benzoxazine polymers via Sonogashira coupling reaction. Macromolecules 44:1801–1807CrossRefGoogle Scholar
  18. 18.
    Choi SW, Park JO, Pak C, Choi KH, Lee JC, Chang H (2013) Design and synthesis of cross-linked copolymer membranes based on poly(benzoxazine) and Polybenzimidazole and their application to an electrolyte membrane for a high-temperature PEM fuel cell. Polymers 5:77–111CrossRefGoogle Scholar
  19. 19.
    Chernykh A, Agag T, Ishida H (2009) Novel benzoxazine monomer containing diacetylene linkage: an approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalysts. Polymer 50:3153–3157CrossRefGoogle Scholar
  20. 20.
    Hariharan A, Srinivasan K, Murthy C, Alagar M (2018) Synthesis and characterization of a novel class of low temperature cure Benzoxazines. J Polym Res 25:20Google Scholar
  21. 21.
    Zegaoui A, Derradji M, Ma RK, Cai WA, Liu WB, Wang J, Dayo AQ, Song S, Zhang LL (2018) High-performance polymeric materials with greatly improved mechanical and thermal properties from cyanate ester/benzoxazine resin reinforced by silane-treated basalt fibers. J Appl Polym Sci 2018:46283CrossRefGoogle Scholar
  22. 22.
    Mohamed MG, Hsiao CH, Luo FL, Dai LZ, Kuo SW (2015) Multifunctional polybenzoxazine nanocomposites containing photoresponsive azobenzene units, catalytic carboxylic acid groups, and pyrene units capable of dispersing carbon nanotubes. RSC Adv 5:45201–45212CrossRefGoogle Scholar
  23. 23.
    Ishida H, Allen DJ (1996b) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37:4487–4495CrossRefGoogle Scholar
  24. 24.
    Kumar KSS, Nair CPR, Radhakrishnan TS, Ninan KN (2007) Bis allyl benzoxazine: synthesis, polymerisation and polymer properties. Eur Polym J 43:2504–2514CrossRefGoogle Scholar
  25. 25.
    Tang Y, Zhao QL, Zeng K, Miao PK, Zhou K, Tang WR, Zhou HF, Liu T, Wang YP, Yang G (2007) Synthesis of a benzoxazine monomer containing maleimide and allyloxy groups. Chin Chem Lett 18:973–976CrossRefGoogle Scholar
  26. 26.
    Bai Y, Yang P, Song Y, Zhu RQ, Gu Y (2016) Effect of hydrogen bonds on the polymerization of benzoxazines: influence and control. RSC Adv 6:45630–45635CrossRefGoogle Scholar
  27. 27.
    Bai Y, Yang P, Wang T, Gu Y (2017) Blends of polybenzoxazine-polyacrylic acid-hydrogen bonds and enhanced performances. J Mol Struct 1147:26–32CrossRefGoogle Scholar
  28. 28.
    Wang B, Yang P, Li YQ, He YS, Zhu RQ, Gu Y (2017) Blends of polybenzoxazine/poly(acrylic acid): hydrogen bonds and enhanced performances. Polym Int 66:1159–1163CrossRefGoogle Scholar
  29. 29.
    Wang XY, Chen F, Gu Y (2011) Influence of electronic effects from bridging groups on synthetic reaction and thermally activated polymerization of bisphenol-based benzoxazines. J Polym Sci A Polym Chem 49:1443–1452CrossRefGoogle Scholar
  30. 30.
    Liu C, Shen D, Sebastián RM, Marquet J, Schönfeld R (2011) Mechanistic studies on ring-opening polymerization of Benzoxazines: a mechanistically based catalyst design. Macromolecules 44:4616–4622CrossRefGoogle Scholar
  31. 31.
    Shibayama Y, Kawauchi T, Takeichi T (2014) Synthesis and properties of polybenzoxazines containing pyridyl group. High Perform Polym 26:60–68CrossRefGoogle Scholar
  32. 32.
    Zhang HC, Li M, Deng YY, Zhang CX, Ran QC, Gu Y (2014) A novel polybenzoxazine containing styrylpyridine structure via the Knoevenagel reaction. J Appl Polym Sci 131:40823Google Scholar
  33. 33.
    Mohamed MG, Su WC, Lin YC, Wang CF, Chen JK, Jeong KU, Kuo SW (2014) Azopyridine-functionalized benzoxazine with Zn(ClO4)2 form high-performance polybenzoxazine stabilized through metal-ligand coordination. RSC Adv 4:50373–50385CrossRefGoogle Scholar
  34. 34.
    Song Y, Zhang S, Yang P (2018) Effect of methyl substituent on the curing of bisphenol-arylamine-based benzoxazines. Therm Acta 662:55–63CrossRefGoogle Scholar
  35. 35.
    Yang P, Gu Y (2011) Synthesis and curing behavior of a benzoxazine based on phenolphthalein and its high performance polymer. J Polym Res 18:1725–1733CrossRefGoogle Scholar
  36. 36.
    Burke WJ, Bishop JL, Glennie ELM, Jr B (1965) A new Aminoalkylation reaction. Condensation of phenols with Dihydro-1,3-aroxazines. J Org Chem 30:3423–3427CrossRefGoogle Scholar
  37. 37.
    Accelrys (2011) Materials studio software. http://accerlryscom/products Accessed October 2011Google Scholar
  38. 38.
    Zhang S, Yang P, Bai Y, Zhou T, Zhu RQ, Gu Y (2017) Polybenzoxazines: thermal responsiveness of hydrogen bonds and application as latent curing agents for thermosetting resins. ACS Omega 2:1529–1534CrossRefGoogle Scholar
  39. 39.
    Kim HD, Ishida H (2002) A study on hydrogen-bonded network structure of Polybenzoxazines. J Phys Chem A 106:3271–3280CrossRefGoogle Scholar
  40. 40.
    Kim HD, Ishida H (2003) A study on hydrogen bonding in controlled-structure benzoxazine model oligomers. Macromol Symp 195:123–140CrossRefGoogle Scholar
  41. 41.
    Kuo SW, Wu YC, Wang CF, Jeong KU (2009) Preparing Low-surface-energy polymer materials by minimizing intermolecular hydrogen-bonding interactions. J Phys Chem C 113:20666–20673CrossRefGoogle Scholar
  42. 42.
    Herrera PV, Doyama K, Abe H, Ishida H (2008) Synthesis and characterization of highly fluorinated polymer with the Benzoxazine moiety in the Main chain. Macromolecules 41:9704–9714CrossRefGoogle Scholar
  43. 43.
    Allen DJ, Ishida H (2006) Physical and mechanical properties of flexible polybenzoxazine resins: effect of aliphatic diamine chain length. J Appl Polym Sci 101:2798–2809CrossRefGoogle Scholar
  44. 44.
    Ambrožič R, Šebenik U, Krajnc M (2015) Synthesis, curing kinetics, thermal and mechanical behavior of novel cardanol-based benzoxazines. Polymer 76:203–212CrossRefGoogle Scholar
  45. 45.
    Liu CZ, Sun MM, Zhang B, Zhang XG, Lia JH, Wang L, Xue G, Zhao M, Song CY, Li QL (2017) Preparation and properties of acetylene-terminated benzoxazine/epoxy copolymers. React Funct Polym 120:98–103CrossRefGoogle Scholar
  46. 46.
    Chen W, Tao XM, Xue P, Cheng XY (2005) Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films. Appl Surf Sci 252:1404–1409CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymeric Materials Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduChina
  2. 2.Project DepartmentSinochem Lantian Fluoro Materials Co. LtdZhejiangChina

Personalised recommendations