Advertisement

Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities

  • Laís Postai Sacco
  • Tereza Cristina Luque Castellane
  • Tiago Carregari Polachini
  • Eliana Gertrudes de Macedo Lemos
  • Lucia Maria Carareto AlvesEmail author
ORIGINAL PAPER
  • 46 Downloads

Abstract

Little is known about the biotechnological and biological properties of exopolysaccharides (EPS) from the species within the Burkholderiaceae family, such as Pandoraea species. For this reason, the rheological, chemical and Infrared (IR) spectroscopy with Attenuated Total Reflection (ATR) studies for two strains, belonging to the genus Pandoraea were carried out, and the anti-biofilm and emulsifying activities of these two strains were also investigated. Surface characteristics of bacterial cell walls of the investigated bacterial (MS5 and AS3) strains were categorized as hydrophilic and, their EPS are heteropolysaccharides composed of different types of functional groups (carbonyl, hydroxyl groups and others). The EPS produced by the Pandorea pnomenusa MS5 inhibited the biofilm production by the Burkholderia cepacia pathogenic strain. The polymers showed non-Newtonian fluid characteristics such as shear-thinning and gel-like behavior in aqueous solutions, and both EPS demonstrated hydrocarbon/oil emulsifying capabilities. These results demonstrate that the EPS of P. pnomenusa strains could be attractive for use in industrial and environmental applications.

Keywords

Antibiofilm Bioemulsifier Bioremediation EPS Pseudoplastic 

Notes

Acknowledgements

The authors acknowledge the Program of Agricultural Microbiology FCAV/UNESP Campus Jaboticabal and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing a PROAP doctoral scholarship. We would like also to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for providing the Financial Support (Proceeding No. 2016/16624-1),

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. 1.
    Coughlan LM, Cotter PD, Hill C, Alvarez-ordóñez A (2016) New weapons to fight old enemies : Novel strategies for the ( bio ) control of bacterial biofilms in the food industry. Front Microbiol 7:1–21.  https://doi.org/10.3389/fmicb.2016.01641 CrossRefGoogle Scholar
  2. 2.
    Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT - Food Sci Technol 43:573–583.  https://doi.org/10.1016/j.lwt.2009.12.008 CrossRefGoogle Scholar
  3. 3.
    Rossi E, Paroni M, Landini P (2018) Biofilm and motility in response to environmental and host‐related signals in Gram negative opportunistic pathogens. J Appl Microbiol 125:1587–1602.  https://doi.org/10.1111/jam.14089 CrossRefGoogle Scholar
  4. 4.
    Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962.  https://doi.org/10.1016/j.carbpol.2011.08.083 CrossRefGoogle Scholar
  5. 5.
    Schaumann GE, Braun B, Kirchner D, Rotard W, Szewzyk U, Grohmann E (2007) Influence of biofilms on the water repellency of urban soil samples. Hydrol Process An Int J 21:2276–2284CrossRefGoogle Scholar
  6. 6.
    Wang Y, Ahmed Z, Feng W, Li C, Song S (2008) Physicochemical properties of exopolysaccharide produced by lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int J Biol Macromol 43:283–288.  https://doi.org/10.1016/j.ijbiomac.2008.06.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Rendueles O, Kaplan JB, Ghigo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346.  https://doi.org/10.1111/j.1462-2920.2012.02810.x CrossRefPubMedGoogle Scholar
  8. 8.
    Liang T, Wang S (2015) Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Mar Drugs 13:1847–1863.  https://doi.org/10.3390/md13041847 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Parrino B, Schillaci D, Carnevale I et al. (2018) Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 161:154–178.  https://doi.org/10.1016/j.ejmech.2018.10.036 CrossRefPubMedGoogle Scholar
  10. 10.
    Ninomiya E, Kizaki T (1969) Bacterial polysaccharide from bacillus polymyxa no. 271. Macromol Mater Eng 6:179–185Google Scholar
  11. 11.
    Castellane TCL, Campanharo JC, Colnago LA, Coutinho ID, Lopes ÉM, Lemos MVF, de Macedo Lemos EG (2017) Characterization of new exopolysaccharide production by rhizobium tropici during growth on hydrocarbon substrate. Int J Biol Macromol 96:361–369.  https://doi.org/10.1016/j.ijbiomac.2016.11.123 CrossRefPubMedGoogle Scholar
  12. 12.
    Kanmani P, Suganya K, Satish kumar R et al (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by enterococcus faecium mc13 isolated from the gut of fish. Appl Biochem Biotechnol 169:1001–1015.  https://doi.org/10.1007/s12010-012-0074-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Rütering M, Schmid J, Gansbiller M, et al. (2018) Rheological characterization of the exopolysaccharide Paenan in surfactant systems. Carbohydr Polym. 181:719–726.  https://doi.org/10.1016/j.carbpol.2017.11.086 CrossRefPubMedGoogle Scholar
  14. 14.
    Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2016) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124.  https://doi.org/10.1016/j.carbpol.2016.10.084 CrossRefPubMedGoogle Scholar
  15. 15.
    Sacco LP (2013) Isolamento de bactérias produtoras de enzimas de interesse em processos biotecnológicos. Univ. Estadual PaulGoogle Scholar
  16. 16.
    Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  17. 17.
    Castellane TCL, Otoboni AMMB, Lemos EG de M (2015) Characterization of exopolysaccharides produced by rhizobia species. Rev Bras Ciência do Solo 39:1566–1575.  https://doi.org/10.1590/01000683rbcs20150084 CrossRefGoogle Scholar
  18. 18.
    Breedveld MW, Zevenhuizen TM, Zehnder AJB (1990) Osmotically induced oligo- and polysaccharide synthesis by rhizobium meliloti Su47. J Gen Microbiol 136:2511–2519CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  20. 20.
    DuBois M (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  21. 21.
    Martins MA, Forato LA, Mattoso LHC, Colnago LA (2006) A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydr Polym 64:127–133.  https://doi.org/10.1016/j.carbpol.2005.10.034 CrossRefGoogle Scholar
  22. 22.
    Fu DT, O’Neill RA (1995) Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal Biochem 227:377–384.  https://doi.org/10.1006/abio.1995.1294 CrossRefPubMedGoogle Scholar
  23. 23.
    Castellane TCL, Lemos MVF, Lemos EGDM (2014) Evaluation of the biotechnological potential of rhizobium tropici strains for exopolysaccharide production. Carbohydr Polym 111:191–197.  https://doi.org/10.1016/j.carbpol.2014.04.066 CrossRefPubMedGoogle Scholar
  24. 24.
    Steffe JF (1996) Rheological methods in food process engineering. Print book. English, 2nd ed. Freeman Press, East LansingGoogle Scholar
  25. 25.
    Sousa C, Henriques M, Azeredo J, Teixeira P, Oliveira R (2008) Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World J Microbiol Biotechnol 24:423–426.  https://doi.org/10.1007/s11274-007-9478-4 CrossRefGoogle Scholar
  26. 26.
    Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacilllus species. Microbiology 53:224–229Google Scholar
  27. 27.
    de Silva FAS, de Azevedo CAV (2002) Versão do programa computacional Assistat para o sistema operacional Windows. Rev Bras Prod Agroindustriais 4:71–78CrossRefGoogle Scholar
  28. 28.
    Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, pp 1–20CrossRefGoogle Scholar
  29. 29.
    Ferreira AS, Leitão JH, Silva IN et al (2010) Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol 76:441–450.  https://doi.org/10.1128/AEM.01828-09 CrossRefPubMedGoogle Scholar
  30. 30.
    Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182.  https://doi.org/10.1016/j.biortech.2004.09.021 CrossRefPubMedGoogle Scholar
  31. 31.
    Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, Wu R, Li P (2015) Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr Polym 115:230–237.  https://doi.org/10.1016/j.carbpol.2014.08.044 CrossRefPubMedGoogle Scholar
  32. 32.
    Kanmani P, Satish kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 102:4827–4833.  https://doi.org/10.1016/j.biortech.2010.12.118 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao G, Kan J, Li Z, Chen Z (2005) Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohydr Polym 61:125–131.  https://doi.org/10.1016/j.carbpol.2005.04.020 CrossRefGoogle Scholar
  34. 34.
    Nataraj S, Schomäcker R, Kraume M, Mishra IM, Drews A (2008) Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. J Membr Sci 308:152–161.  https://doi.org/10.1016/j.memsci.2007.09.060 CrossRefGoogle Scholar
  35. 35.
    Meneghine AK, Moretto C, Castellane TCL, Carareto Alves LM (2016) Production, characterization and bioemulsifying activity of an exopolysaccharide produced by Sphingomonas sp. isolated from freshwater. J Polym Environ 25:1080–1086.  https://doi.org/10.1007/s10924-016-0878-0 CrossRefGoogle Scholar
  36. 36.
    Leonel TF, Moretto C, Cristina T et al (2019) The influence of cooper and chromium ions on the production of exopolysaccharide and Polyhydroxybutyrate by rhizobium tropici. J Polym Environ 0:0.  https://doi.org/10.1007/s10924-018-1359-4 CrossRefGoogle Scholar
  37. 37.
    Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R, Cescutti P (2014) Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation. PLoS One 9:1–10.  https://doi.org/10.1371/journal.pone.0094372 CrossRefGoogle Scholar
  38. 38.
    Castellane TCL, Persona MR, Campanharo JC, de Macedo Lemos EG (2015) Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. Int J Biol Macromol 74:515–522.  https://doi.org/10.1016/j.ijbiomac.2015.01.007 CrossRefPubMedGoogle Scholar
  39. 39.
    de Mônaco Lopes B, Lessa VL, Silva BM et al (2015) Xanthan gum: properties, production conditions, quality and economic perspective. J Food Nutr Res 54Google Scholar
  40. 40.
    Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 59:84–89.  https://doi.org/10.1016/j.ijbiomac.2013.04.025 CrossRefPubMedGoogle Scholar
  41. 41.
    Han M, Du C, Xu ZY et al (2016) Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2. Int J Biol Macromol 88:603–613.  https://doi.org/10.1016/j.ijbiomac.2016.04.035 CrossRefPubMedGoogle Scholar
  42. 42.
    Freitas F, Alves VD, Gouveia AR, Pinheiro C, Torres CAV, Grandfils C, Reis MAM (2014) Controlled production of exopolysaccharides from enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities. Appl Biochem Biotechnol 172:641–657.  https://doi.org/10.1007/s12010-013-0560-0 CrossRefPubMedGoogle Scholar
  43. 43.
    Katzbauer B (1998) Properties and applications of xanthan gum. Polym Degrad Stab 59:81–84.  https://doi.org/10.1016/S0141-3910(97)00180-8 CrossRefGoogle Scholar
  44. 44.
    Yu L, Xu X, Zhou J et al (2016) Food hydrocolloids chain conformation and rheological behavior of exopolysaccharide from Bacillus mucilaginosus SM-01.  https://doi.org/10.1016/j.foodhyd.2016.11.013 CrossRefGoogle Scholar
  45. 45.
    Mezger M, Reichert H, Schöder S et al (2006) High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface. Proc Natl Acad Sci U S A 103:18401–18404.  https://doi.org/10.1073/pnas.0608827103 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou H, Schön E-M, Wang M, Glassman MJ, Liu J, Zhong M, Díaz Díaz D, Olsen BD, Johnson JA (2014) Crossover experiments applied to network formation reactions: improved strategies for counting elastically inactive molecular defects in PEG gels and hyperbranched polymers. J Am Chem Soc 136:9464–9470CrossRefGoogle Scholar
  47. 47.
    Moretto C, Castellane TCL, Lopes EM, Omori WP, Sacco LP, Lemos EGM (2015) Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia. Int J Biol Macromol 81:291–298.  https://doi.org/10.1016/j.ijbiomac.2015.07.056 CrossRefPubMedGoogle Scholar
  48. 48.
    Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423.  https://doi.org/10.1007/BF00056425 CrossRefGoogle Scholar
  49. 49.
    Sacco LP, Castellane TCL, Lopes EM, de Macedo Lemos EG, Alves LMC (2016) Properties of Polyhydroxyalkanoate granules and bioemulsifiers from Pseudomonas sp. and Burkholderia sp. isolates growing on glucose. Appl Biochem Biotechnol 178:990–1001.  https://doi.org/10.1007/s12010-015-1923-5 CrossRefPubMedGoogle Scholar
  50. 50.
    Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L (2013) Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409.  https://doi.org/10.4161/viru.25338 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rushton L, Sass A, Baldwin A, Dowson CG, Donoghue D, Mahenthiralingam E (2013) Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob Agents Chemother 57:2972–2980.  https://doi.org/10.1128/AAC.00140-13 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Olgun U, Tunç K, Hoş A (2019) Preparation and antibacterial properties of nano biocomposite poly (ε-caprolactone)-SiO 2 films with nanosilver. J Polym Res 26:24CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Departamento de TecnologiaUNESP — Univ Estadual Paulista, Faculdade de Ciências Agrárias e VeterináriasJaboticabalBrazil
  2. 2.Departamento de Biologia Aplicada a AgropecuáriaUNESP — Univ Estadual Paulista, Faculdade de Ciências Agrárias e VeterináriasJaboticabalBrazil
  3. 3.Departamento de Engenharia e Tecnologia de Alimentos – DETAUNESP — Univ Estadual Paulista, Instituto de BiociênciasSão José do Rio PretoBrazil

Personalised recommendations