Recycling of waste melamine formaldehyde foam as flame-retardant filler for polyurethane foam

  • Xiaotong Wang
  • Yan Shi
  • Yuan LiuEmail author
  • Qi Wang


In the present research, the waste leftovers of a thermoset polymer foam with intrinsic flame resistance, melamine formaldehyde foam (MF), were pulverized to fine powder and added into polyurethane foam (PUF) as a flame-retardant filler. A series of characterizations were employed to investigate the obtained MF powder and the properties of the new flame retardant PUF. It was revealed that the pulverization process could produce fine MF powder. Moreover, it showed that the incorporation of MF powder could greatly decrease the heat release rate (HRR) and flammability of PUF without obvious impairment of mechanical property. Combined with a small amount of guanidine phosphate (GP), it could achieve quick self-extinguishment of the modified PUF. The process for recycling waste MF is easy and cheap, indicating an eco-friendly way for waste MF recycling, as well as a successful preparation of a low-cost and halogen-free flame retardant PUF.


Waste Melamine formaldehyde foam Recycling Polyurethane foam Flame-retardant 



The authors acknowledge the financial support from the National Key Research and Development Program of China (Project No.217YFB309001), NSAF (No. U183010085), the open project of Sichuan Provincial Key Lab of Process Equipment and Control (GK201711).


  1. 1.
    Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Interfaces 6:14181–14188CrossRefGoogle Scholar
  2. 2.
    Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58CrossRefGoogle Scholar
  3. 3.
    Perisić M, Radojević V, Uskoković PS, Stojanović D, Jokić B, Aleksić R (2009) Wood-thermoplastic composites based on industrial waste and virgin high-density polyethylene (HDPE). Mater Manuf Process 24:1207–1213CrossRefGoogle Scholar
  4. 4.
    Ayrilmis N, Buyuksari U, Avci E (2009) Utilization of waste Tire rubber in the manufacturing of particleboard. Mater Manuf Process 24:688–692CrossRefGoogle Scholar
  5. 5.
    WILLIAMS KS. Waste as a resource: Royal Society of Chemistry; 2013Google Scholar
  6. 6.
    Cagnetta G, Zhang K, Zhang Q, Huang J, Yu G (2018) Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics. Waste Manag 75:181–186CrossRefGoogle Scholar
  7. 7.
    Martínez-Lópeza M, Martínez-Barrerab G, Coz-Díaza JJ, Martínez-Martíneza JE, Gencelc O, MCS R et al (2018) Polymer waste materials as fillers in polymer mortars: experimental and finite elements simulation. Case Studies in Construction Materials 9:e00178CrossRefGoogle Scholar
  8. 8.
    Eskander SB, Tawfik ME (2011) Polymer-cement composite based on recycled expanded polystyrene foam waste. Polym Compos 32:1430–1438CrossRefGoogle Scholar
  9. 9.
    Ki Tae Kim TDD, Jeong HM, Anjanapura RV, Aminabhavi TM (2015) Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys 153:291–300CrossRefGoogle Scholar
  10. 10.
    Xinyue Tang ZZ, Zhang X, Huo W, Liu J, Yan S, Yang J (2018) Design and formulation of polyurethane foam used for porous alumina ceramics. J Polym Res 25:136–145CrossRefGoogle Scholar
  11. 11.
    Duc Anh Nguyen YRL, Raghu AV, Jeong HM, Shin CM (2009) Morphological and physical properties of athermoplastic polyurethane reinforced with functionalized graphene sheet. Polymer Int 58:412–417CrossRefGoogle Scholar
  12. 12.
    Duc Anh Nguyen RAV, Choi JT, Jeong HM (2010) Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method. Polym Polym Compos 18:351–358Google Scholar
  13. 13.
    Anuwat Saetung AR, Tsupphayakorn-ake P, Bannob P, Tulyapituk T, Saetung N (2016) Properties of waterborne polyurethane films: effects of blend formulation with hydroxyl telechelic natural rubber and modified rubber seed oils. J Polym Res 23:264–273CrossRefGoogle Scholar
  14. 14.
    Hsien-Tang Chiu C-YC, Pan H-W, Chiang T-Y, Kuo M-T, Wang Y-H (2012) Characterization of polyurethane foam as heat seal coating in medical pouch packaging application. J Polym Res 19:9791–9802CrossRefGoogle Scholar
  15. 15.
    Sandip D, Desai ALE, Sinha VK (2003) Biomaterial Based Polyurethane Adhesive for Bonding Rubber and Wood Joints. J Polym Res 10:275–281CrossRefGoogle Scholar
  16. 16.
    Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-Bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104:81–88Google Scholar
  17. 17.
    Raghu AV, Jeong HM (2008) Synthesis, Characterization of Novel DihydrazideContaining Polyurethanes Based onN1,N2-Bis[(4-hydroxyphenyl)methylene]ethanedihydrazideand Various Diisocyanates. J Appl Polym Sci 107:3401–3407Google Scholar
  18. 18.
    Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab 95:1138–1145CrossRefGoogle Scholar
  19. 19.
    Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRefGoogle Scholar
  20. 20.
    Devallencourt C, Saiter JM, Fafet A, Ubrich E (1995) Thermogravimetry/Fourier transform infrared coupling investigations to study the thermal stability of melamine formaldehyde resin. Thermochim Acta 259:143–151CrossRefGoogle Scholar
  21. 21.
    Ning Wang YL, Liu Y, Wang Q (2017) Properties and mechanisms of different guanidine flame retardant wood pulp paper. J Anal Appl Pyrolysis 128:224–231CrossRefGoogle Scholar
  22. 22.
    Ning Wang YL, Xu C, Liu Y, Wang Q (2017) Acid-base synergistic flame retardant wood pulp paper with high thermal stability. Carbohydr Polym 178:123–130CrossRefGoogle Scholar
  23. 23.
    Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D (2006) Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47:8495–8508CrossRefGoogle Scholar
  24. 24.
    Bin Zhao LC, Long J-W, Chen H-B, Wang Y-Z (2013) Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Ind Eng Chem Res 52:2875–2886CrossRefGoogle Scholar
  25. 25.
    Chen M-J, Xu Y-J, Rao W-H, Huang J-Q, Wang X-L, Chen L, Wang YZ (2014) Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviors of flexible polyurethane foams. Ind Eng Chem Res 53:8773–8783CrossRefGoogle Scholar
  26. 26.
    Benin V, Gardelle B, Morgan AB (2014) Heat release of polyurethanes containing potential flame retardants based on boron and phosphorus chemistries. Polym Degrad Stab 106:108–121CrossRefGoogle Scholar
  27. 27.
    Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S (2012) Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stab 97:2428–2440CrossRefGoogle Scholar
  28. 28.
    Krämer RH, Zammarano M, Linteris GT, Gedde UW, Gilman JW (2010) Heat release and structural collapse of flexible polyurethane foam. Polym Degrad Stab 95:1115–1122CrossRefGoogle Scholar
  29. 29.
    Ng WS, Lee CS, Chuah CH, Cheng S-F (2017) Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind Crop Prod 97:65–78CrossRefGoogle Scholar
  30. 30.
    Alongi J, Carosio F. Flame retardancy of flexible polyurethane foams 2017:171–200Google Scholar
  31. 31.
    Lotsch BV, Schnick W (2007) New light on an old story: formation of melam during thermal condensation of melamine. Chemistry 13:4956–4968CrossRefGoogle Scholar
  32. 32.
    Price D, Liu Y, Milnes GJ, Hull R, Kandola BK, Horrocks AR (2002) An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam. Fire Mater 26:201–206CrossRefGoogle Scholar
  33. 33.
    Dick CM, Denecker C, Liggat JJ, Mlhammed MH, Snape CE, Seeley G et al (2000) Solid state 13C and in situ1H NMR study on the effect of melamine on the thermal degradation of a flexible polyurethane foam. Polym Int 49:1177–1182CrossRefGoogle Scholar
  34. 34.
    Duquesne S, Le Bras M, Bourbigot S, Delobel R, Camino G, Eling B et al (2001) Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci 82:3262–3274CrossRefGoogle Scholar
  35. 35.
    Chen M-J, Shao Z-B, Wang X-L, Chen L, Wang Y-Z (2012) Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Ind Eng Chem Res 51:9769–9776CrossRefGoogle Scholar
  36. 36.
    Chen X, Liu Y, Bai S, Wang Q (2014) Macromolecular nitrogen-phosphorous compound/expandable graphite synchronous expansion flame retardant polystyrene foam. Polym-Plast Technol Eng 53:1402–1407CrossRefGoogle Scholar
  37. 37.
    Garrido MA, Font R (2015) Pyrolysis and combustion study of flexible polyurethane foam. J Anal Appl Pyrolysis 113:202–215CrossRefGoogle Scholar
  38. 38.
    Wang Z-Z, Lv P, Hu Y, Hu K-L (2009) Thermal degradation study of intumescent flame retardants by TG and FTIR melamine phosphate and its mixture with pentaerythritol. J Anal Appl Pyrolysis 86:207–214CrossRefGoogle Scholar
  39. 39.
    Balabanovich AI (2005) Thermal decomposition study of intumescent additives: Pentaerythritol phosphate and its blend with melamine phosphate. Thermochim Acta 435:188–196CrossRefGoogle Scholar
  40. 40.
    Yan Y-W, Chen L, Jian R-K, Kong S, Wang Y-Z (2012) Intumescence: an effect way to flame retardance and smoke suppression for polystryene. Polym Degrad Stab 97:1423–1431CrossRefGoogle Scholar
  41. 41.
    Zhang P, Song L, Lu H, Hu Y, Xing W, Ni J, Wang J (2009) Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polym Degrad Stab 94:201–207CrossRefGoogle Scholar
  42. 42.
    Servay T, Voelkel R, Schmiedberger H, Lehmann S (2000) Thermal oxidation of the methylene diphenylene unit in MDI-TPU. Polymer 42:5247–5256CrossRefGoogle Scholar
  43. 43.
    Napier DH, Wong TW (1972) Toxic products from the combustion and pyrolysis of polyurethane foams. Polym Int 4:45–52Google Scholar
  44. 44.
    Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51:1087–1095Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina
  2. 2.Sichuan Provincial Key Lab of Process Equipment and ControlSichuan University of Science & EngineeringZigongChina

Personalised recommendations