Journal of Polymer Research

, 26:55 | Cite as

High temperature PEMs developed from the blends of Polybenzimidazole and poly(azomethine-ether)

  • Balakondareddy Sana
  • Rambabu Koyilapu
  • Sengottuvelu Dineshkumar
  • Athianna Muthusamy
  • Tushar JanaEmail author


Proton exchange membrane (PEM) has been developed from the polymer blend of polybenzimidazole (PBI) and poly(azomethine-ether) (PAME). The effects of the blend compositions on the properties such as thermo-mechanical stability, proton conductivity etc. of PEM were studied. The miscibility of the blend membranes was confirmed by characterizing the blend samples using varieties of spectroscopy and thermo dynamical techniques. FT-IR and SS-NMR studies revealed the presence of specific interactions between the two polymers. All blend membranes showed single glass transition temperature (Tg) attributing that the this blend system is a miscible blend. The thermogravimetric studies confirmed that the blend membranes were more stable than the pristine PBI below 300 °C temperatures and less stable above 300 °C. Morphology probed by transmission electron microscopy studies displayed morphological features which consisted of both thread like structure and particle like structures thus confirming the uniform mixing of polymers in the blends. Mechanical stabilities of the blend membranes were quite high compared to the pristine polymers as obtained from the dynamic mechanical analyzer (DMA) studies. The blend membranes showed higher proton conductivity compared to pristine PBI. The proton conductivity increased upon increasing the percentage of PAME in the blend membranes. All these results indicated that the blend membranes are promising candidates for the application in high temperature proton exchange membrane in fuel cell.

Graphical abstract

Polybenzimidazole Blends as PEM for the use in Fuel Cell


Proton exchange membrane Polybenzimidazoles Poly(azomethine-ether) Polymer blend Proton conductivity 



We gratefully acknowledge financial support by SERB, Govt. of India (Project No. SB/S1/PC-054/2013). We also thank UGC-CAS and DST-PURSE for helping our reseach with the financial support. S.B.K.R thanks UGC for the junior and senior research fellowship.


  1. 1.
    Zhang L, Chae SR, Hendren Z, Park JS, Wiesner MR (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204:87–97CrossRefGoogle Scholar
  2. 2.
    Joseph D, Krishnan NN, Henkensmeier D, Jang JH, Choi SH, Kim HJ, Han J, Nam SW (2017) Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes. J Mater Chem A 5:409–417CrossRefGoogle Scholar
  3. 3.
    Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, HobokenGoogle Scholar
  4. 4.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612CrossRefGoogle Scholar
  5. 5.
    Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. ChemPhysChem 1:162–193CrossRefGoogle Scholar
  6. 6.
    Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRefGoogle Scholar
  7. 7.
    Sana B, Jana T (2016) Polybenzimidazole composite with acidic surfactant like molecules: a unique approach to develop PEM for fuel cell. Eur Polym J 84:421–434CrossRefGoogle Scholar
  8. 8.
    Hazarika M, Jana T (2012) Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole). ACS Appl Mater Interfaces 4:5256–5265CrossRefGoogle Scholar
  9. 9.
    Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energy Environ Sci 1:101–119CrossRefGoogle Scholar
  10. 10.
    Chen S, Pan H, Chang Z, Jin M, Pu H (2018) Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics.
  11. 11.
    Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrog Energy 41:10044–10052CrossRefGoogle Scholar
  12. 12.
    Hazarika M, Jana T (2013) Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer. Eur Polym J 49:1564–1576CrossRefGoogle Scholar
  13. 13.
    Sana B, Jana T (2018) Polymer electrolyte membrane from polybenzimidazoles: influence of tetraamine monomer structure. Polymer 137:312–323CrossRefGoogle Scholar
  14. 14.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRefGoogle Scholar
  15. 15.
    Mamlouck M, Scott K (2010) The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int J Hydrog Energy 35:784–793CrossRefGoogle Scholar
  16. 16.
    Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232CrossRefGoogle Scholar
  17. 17.
    Pu H, Qin Y, Tang L, Teng X, Chang Z (2009) Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Electrochim Acta 54:2603–2609CrossRefGoogle Scholar
  18. 18.
    Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRefGoogle Scholar
  19. 19.
    Asensio JA, Sánchez EM, Gómez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239CrossRefGoogle Scholar
  20. 20.
    He RH, Li QF, Jensen JO, Bjerrum NJ (2007) Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J Polym Sci A Polym Chem 45:2989–2997CrossRefGoogle Scholar
  21. 21.
    Lebaek J, Ali ST, Moller P, Mathiasen C, Nielsen LP, Kaer SK (2010) Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell. Int J Hydrog Energy 35:9943–9953CrossRefGoogle Scholar
  22. 22.
    Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska GZ, Garbarczyk JE, Nowinski JL, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9(4):349–355CrossRefGoogle Scholar
  23. 23.
    Quartarone E, Mustarelli P, Carollo A, Grandi S, Magistris A, Gerbaldi C (2009) PBI composite and nanocomposite membranes for PEMFCs: the role of the filler. Fuel Cells 9(3):231–236CrossRefGoogle Scholar
  24. 24.
    Mustarelli P, Quartarone E, Grandi S, Carollo A, Magistris A (2008) Polybenzimidazole-based membranes as a real alternative to Nafion for fuel cells operating at low temperature. Adv Mater 20:1339–1343CrossRefGoogle Scholar
  25. 25.
    Musto P, Karasz FE, MacKnight WJ (1991) Hydrogen bonding in polybenzimidazole/poly(ether imide) blends: a spectroscopic study. Macromolecules 24:4762–4769CrossRefGoogle Scholar
  26. 26.
    Deimede V, Voyiatzis GA, Kallitsis JK, Qingfeng LN, Bjerrum J (2000) Miscibility behavior of Polybenzimidazole/sulfonated Polysulfone blends for use in fuel cell applications. Macromolecules 33:7609–7617CrossRefGoogle Scholar
  27. 27.
    Arunbabu D, Sannigrahi A, Jana T (2008) Blends of Polybenzimidazole and poly(vinylidene fluoride) for use in a fuel cell. J Phys Chem B 112:5305–5310CrossRefGoogle Scholar
  28. 28.
    Hazarika M, Arunbabu D, Jana T (2010) Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template. J Colloid Interface Sci 351:374–383CrossRefGoogle Scholar
  29. 29.
    Kim AR, Vinothkannan M, Yoo DJ (2017) Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int J Hydrog Energy 42:4349–4365CrossRefGoogle Scholar
  30. 30.
    Li C, Yang Z, Liu X, Zhang Y, Dong J, Zhang Q, Cheng H (2017) Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs). Int J Hydrog Energy 42:28567–28577CrossRefGoogle Scholar
  31. 31.
    Tang TH, Su PH, Liu YC, Yu TL (2014) Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells. Int J Hydrog Energy 39:11145–11156CrossRefGoogle Scholar
  32. 32.
    Mack F, Aniol K, Ellwein C, Kerres J, Zeis R (2015) Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. J Mater Chem A 3:10864–10874CrossRefGoogle Scholar
  33. 33.
    Kerres J, Ullrich A, Meier F, Häring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125:243–249CrossRefGoogle Scholar
  34. 34.
    Vasanthi BJ, Ravikumar L (2013) Synthesis and characterization of poly (azomethine ester) s with a pendent dimethoxy benzylidene group. Open J Polym Chem 3:70–77CrossRefGoogle Scholar
  35. 35.
    Dineshkumar S, Muthusamy A, Chitra P, Anand S (2015) Synthesis, characterization, optical and electrical properties of thermally stable polyazomethines derived from 4, 4′-oxydianiline. J Adhes Sci Technol 29:2605–2621CrossRefGoogle Scholar
  36. 36.
    Zhang X, Chen S, Chen T, Sun X, Liu F, Qi G (2007) Synthesis of a soluble azomethine-containing bisphenol and the properties of its modified epoxy thermosets. J Appl Polym Sci 106:1632–1639CrossRefGoogle Scholar
  37. 37.
    Grigoras M, Catanescu CO (2004) Imine oligomers and polymers. J Macromol Sci, Part C: Polym Rev 44:131–173CrossRefGoogle Scholar
  38. 38.
    Wang C, Shieh S, LeGoff E, Kanatzidis MG (1996) Synthesis and characterization of a new conjugated aromatic poly (azomethine) derivative based on the 3′, 4′ -dibutyl-α-terthiophene building block. Macromolecules 29:3147–3156CrossRefGoogle Scholar
  39. 39.
    Tanaka H, Shibahara Y, Sato T, Ota T (1993) Preparation and thermal behavior of spin polymers and their precursors based on azomethine mesogens. Eur Polym J 29:1525–1530CrossRefGoogle Scholar
  40. 40.
    Sun SJ, Chang TC, Li CH (1993) Studies on thermotropic liquid crystalline polycarbonates-I. Synthesis and properties of thermotropic liquid crystalline poly (azomethine-carbonate)s. Eur Polym J 29:951–955CrossRefGoogle Scholar
  41. 41.
    Li CH, Chang TC (1991) Thermotropic liquid crystalline polymer. III. Synthesis and properties of poly (amide-azomethine-ester). J Polym Sci Part A: Polym Chem 29:361–367CrossRefGoogle Scholar
  42. 42.
    Marin L, Cozan V, Bruma M, Grigoras VC (2006) Synthesis and thermal behaviour of new poly (azomethine-ether). Eur Polym J 42:1173–1182CrossRefGoogle Scholar
  43. 43.
    Singha S, Jana T (2014) Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface. ACS Appl Mater Interfaces 6:21286–21296CrossRefGoogle Scholar
  44. 44.
    Ghosh S, Sannigrahi A, Maity S, Jana T (2011) Role of clays structures on the polybenzimidazole nanocomposites: potential membranes for the use in polymer electrolyte membrane fuel cell. J Phys Chem C 115:11474–11483CrossRefGoogle Scholar
  45. 45.
    He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia
  2. 2.Department of ChemistryBirla Institute of Technology and SciencePilaniIndia
  3. 3.PG and Research Department of ChemistrySri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia

Personalised recommendations