Advertisement

Journal of Polymer Research

, 26:44 | Cite as

Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement

  • Chin-San Wu
  • Chi-Hui TsouEmail author
ORIGINAL PAPER
  • 55 Downloads

Abstract

Filaments for three-dimensional printing were fabricated from composites based from biodegradable Poly(lactic Acid) (PLA) and renewable rice husk (RH). Acrylic acid (AA)-grafted PLA (PLA-g-AA) and coupling agent-treated rice husk (TRH) were incorporated to improve the properties of PLA/RH biocomposites. The biocomposite morphology, tensile properties, water absorption, and biodegradability were investigated. PLA-g-AA/TRH demonstrated superior tensile properties than PLA/RH because of the improved compatibility between the polymer and the TRH. TRH was evenly dispersed in the PLA-g-AA, brought about by ester reaction; consequently, branched and three-dimensional networks structures were generated. These PLA-g-AA/TRH biocomposites can be used as biodegradable materials or filaments for 3D printing applications because of their low cost and excellent properties.

Keywords

Poly(lactic acid) (PLA) Rice husk (RH) Surface treatment Coupling agent-treated Three-dimensional networks structures 3D printing application 

Notes

Acknowledgements

The authors would like to thank the National Science Council (Taipei City, Taiwan, R.O.C.) for the financial support (MOST 103-2622-E-244 -001 -CC3) and Wuliangye Group Co. Ltd. The authors also express their appreciation to the National Natural Science Foundation of China, Apex Nanotek Co. Ltd., the Ratchadapisek Sompote Fund for Postoctoral Fellowship (Chulalongkon University), the Sichuan Province Science and Technology Support Program (19CXRC0081), the Zigong City Science and Technology office (2017XC16).

References

  1. 1.
    Obeng-Odoom F (2014) Green neoliberalism: recycling and sustainable urban development in Sekondi-Takoradi. Habitat Int 41:129–134CrossRefGoogle Scholar
  2. 2.
    Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev 14(1):233–248CrossRefGoogle Scholar
  3. 3.
    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23(1):47–56CrossRefGoogle Scholar
  4. 4.
    Shih Y-F, Huang C-C (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18(6):2335–2340CrossRefGoogle Scholar
  5. 5.
    Tsou CH, Lee HT, Hung WS, Wang CC, Shu CC, Suen MC, De Guzman M (2016) Synthesis and properties of antibacterial polyurethane with novel Bis(3-pyridinemethanol) silver chain extender. Polymer 85:96–105CrossRefGoogle Scholar
  6. 6.
    Radjabian M, Kish MH, Mohammadi N (2012) Structure–property relationship for poly(lactic acid) (PLA) filaments: physical, thermomechanical and shape memory characterization. J Polym Res 19(6):9870CrossRefGoogle Scholar
  7. 7.
    Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRefGoogle Scholar
  8. 8.
    Tsou CH, Suen MC, Yao WH, Yeh JT, Wu CS, Tsou CY, Chiu SH, Chen JC, Wang RY, Lin SM, Hung WS, De Guzman M, Hu CC, Lee KR (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl Tributyl citrate as a plasticizer. Materials 7:5617–5632PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tsou CH, Wu CS, Hung WS, De Guzmana MR, Gao C, Wang RY, Chen J, Wan N, Peng YJ, Suen MC (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271.  https://doi.org/10.1016/j.polymer.2018.11.048
  10. 10.
    Tsou C-H, Yao W-H, Lu Y-C, Tsou C-Y, Wu C-S, Chen J, Wang RY, Su C, Hung W-S, De Guzman M, Suen M-C (2017) Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube Nanocomposite. Polymers 9:100CrossRefGoogle Scholar
  11. 11.
    Li HZ, Chen SC, Wang YZ (2014) Thermoplastic PVA/PLA blends with improved processability and hydrophobicity. Ind Eng Chem Res 53(44):17355–17361CrossRefGoogle Scholar
  12. 12.
    Mahieu A, Terrié C, Agoulon A, Leblanc N, Youssef B (2013) Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20:229CrossRefGoogle Scholar
  13. 13.
    Wu C-S, Liao H-T, Tsou C-H (2018) Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties. J Polym Res 25:240CrossRefGoogle Scholar
  14. 14.
    Müller P, Bere J, Fekete E, Móczó J, Pukánszky B (2016) Interactions, structure and properties in PLA/plasticized starch blends. Polymer 103:9–18CrossRefGoogle Scholar
  15. 15.
    Tsou CH, Yao WH, Hung WS, Suen MC, De Guzman M, Chen J, Tsou CY, Wang RY, Chen JC, Wu CS (2018) Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties. Ind Eng Chem Res 57(7):2537–2545CrossRefGoogle Scholar
  16. 16.
    Qian S, Zhang H, Yao W, Sheng K (2018) Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos Part B 133:203–209CrossRefGoogle Scholar
  17. 17.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRefGoogle Scholar
  18. 18.
    Tan JP, Jahim JM, Wu TY, Harun S, Kim BH, Mohammad AW (2014). Ind Eng Chem Res 53(42):16123–16134CrossRefGoogle Scholar
  19. 19.
    Ding L, Zou B, Shen L, Zhao C, Wang Z, Guo Y, Wang X, Liu Y (2014) A simple route for consecutive production of activated carbon and liquid compound fertilizer from rice husk. Colloid Surf A 446:90–96CrossRefGoogle Scholar
  20. 20.
    Anda M, Shamshuddin J, Fauziah CI (2013) Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil Tillage Res 132:1–11CrossRefGoogle Scholar
  21. 21.
    Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86CrossRefGoogle Scholar
  22. 22.
    Yussuf AA, Massoumi I, Hassan A (2010) Comparison of Polylactic acid/Kenaf and Polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429CrossRefGoogle Scholar
  23. 23.
    Tsou CH, Hung WS, Wu CS, Chen JC, Huang CY, Chiu SH, Tsou CY, Yao WH, Lin SM, Chu CK, Hu CC, Lee KR, Suen MC (2014) New composition of maleic-anhydride-grafted poly(lactic acid)/rice husk with methylenediphenyl diisocyanate 20:446–451Google Scholar
  24. 24.
    Nourbakhsh A, Baghlani FF, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Ind Crop Prod 33(1):183–187CrossRefGoogle Scholar
  25. 25.
    Panthapulakkal S, Sain M, Law S (2005) Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polym Int 54(1):137–142CrossRefGoogle Scholar
  26. 26.
    Wu CS, Liao HT (2017) Polyester-based green composites for three-dimensional printing strips: preparation, characterization and antibacterial properties. Polym Bull 74(6):2277–2295CrossRefGoogle Scholar
  27. 27.
    Wu CS, Liao HT (2017) Interface design of environmentally friendly carbon nanotube-filled polyester composites: fabrication, characterisation, functionality and application. Express Polym Lett 11(3):187–198CrossRefGoogle Scholar
  28. 28.
    Nourbakhsh A, Ashori A, Tabrizi AK (2014). Compos Part B 56:279–283CrossRefGoogle Scholar
  29. 29.
    Shih YF (2007). Mater Sci Eng A 445–446:289–295CrossRefGoogle Scholar
  30. 30.
    Jandas PJ, Mohanty S, Nayak SK (2013) Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: A comparative study of theoretical and experimental values. J Appl Polym Sci 127(5):4027–4038CrossRefGoogle Scholar
  31. 31.
    Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. Ind Crop Prod 58:111–124CrossRefGoogle Scholar
  32. 32.
    Saffar A, Carreau PJ, Kamal MR, Ajji A (2014) Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface. Polymer 55(23):6069–6075CrossRefGoogle Scholar
  33. 33.
    Ayswarya EP, Vidya FKF, Renju VS, Thachil ET (2012). Mater Des 41:1–7CrossRefGoogle Scholar
  34. 34.
    Mittal V, Akhtar T, Luckachan G, Matsko N (2015) PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid Polym Sci 293(2):573–585CrossRefGoogle Scholar
  35. 35.
    Wu CS (2012). Polym Degrad Stab 97:64–71Google Scholar
  36. 36.
    Zhao H, Chen Q, Zhang S (2012). Microporous Mesoporous Mater 155:240–244CrossRefGoogle Scholar
  37. 37.
    Aliotta L, Cinelli P, Coltelli MB, Righetti MC, Gazzano M, Lazzeri A (2017). Eur Polym J 93:822–832CrossRefGoogle Scholar
  38. 38.
    Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87(2):1131–1138CrossRefGoogle Scholar
  39. 39.
    Danyadi L, Janecska T, Szabo Z, Nagy G, Moczo J, Pukanszky BW (2007) Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol 67(13):2838–2846CrossRefGoogle Scholar
  40. 40.
    Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2):829–840CrossRefGoogle Scholar
  41. 41.
    Prasitnok K (2016) A coarse-grained model for polylactide: glass transition temperature and conformational properties. J Polym Res 23(7):1–9CrossRefGoogle Scholar
  42. 42.
    Gamon G, Evon P, Rigal L (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Ind Crop Prod 46:173–185CrossRefGoogle Scholar
  43. 43.
    Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84CrossRefGoogle Scholar
  44. 44.
    Tsou C-H, Gao C, De Guzman M, Wu D-Y, Hung W-S, Yuan L, Suen M-C, Yeh J-t (2018) Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polym Polym Compos 26:446–453.  https://doi.org/10.1177/0967391118809210 CrossRefGoogle Scholar
  45. 45.
    Tsou CY, Wu CL, Tsou CH, Chiu SH, Suen MC, Hung WS (2015) Biodegradable composition of poly(lactic acid) from renewable wood flour. Polym Sci Ser B 57:473–480CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Applied CosmetologyKao Yuan UniversityKaohsiung CountyRepublic of China
  2. 2.Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and EngineeringSichuan University of Science and EngineeringZigongChina

Personalised recommendations