Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models
- 39 Downloads
Abstract
A new nanocomposite electrode incorporating poly(3,4-ethylenedioxythiophene) (PEDOT) within the nanocomposite film of the reduced graphene oxide / Titanium dioxide (TiO2) was synthesized to be used in supercapacitor devices. We used constant EDOT monomer for in-situ polymerization and different initial monomer concentration ratio of [rGO]o/[TiO2]o = 1/1, ½ and 1/5. The obtained nanocomposites were examined by FTIR-ATR, UV-vis, SEM-EDX, TGA-DTA, BET surface areas and pore distribution, XRD, TEM, AFM, CV, GCD and EIS analyses. The results showed that graphene oxide was successfully reduced to rGO by means of the microwave-assisted method. It was confirmed by the increases in the specific capacitance of (Csp = 652 F/g) at 1 mV/s for the rGO/TiO2/PEDOT nanocomposite at [rGO]o/[TiO2]o = 1/5. This was related to the pore size (~33.50 nm) of the material for rGO/TiO2/PEDOT at [rGO]o/[TiO2]o = 1/5 obtained from BET analysis. The other Csp values were 475.33 F/g for [rGO]o/[TiO2]o = 1/2, 114.09 F/g for rGO/PEDOT and 48.02 F/g for [rGO]o/[TiO2]o = 1/1. Equivalent circuit model of Rct(CdlRct) was analyzed via ZSimpWin and TINA programmes. A facile and inexpensive approach for a ternary nanocomposite synthesis of rGO/TiO2/PEDOT was presented for future supercapacitor applications.
ᅟ
Keywords
rGO/TiO2/PEDOT Nanocomposite Supercapacitor Pore analysis Microwave irradiationNotes
Acknowledgements
The authors gratefully acknowledge the financial support from TUBITAK, Project number: 117 M042. We wish thank to Assoc.Prof.Dr. Murat Turkyilmaz (Trakya Uni., Chemistry Dep., Inorganic Chem. Div., for his TGA/DTA measurements.
Author contribution
The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.
Compliance with ethical standards
Competing interests
The authors declare that they have no competing interests.
Supplementary material
References
- 1.Zhang YZ, Ding HY, Zhang ML (2008) Hydrous-ruthenium oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors. Thin Solid Films 516:7381–7385Google Scholar
- 2.Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline / activated carbon nanocomposite for supercapacitor application. J Polym Res 23:147Google Scholar
- 3.Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes effect of film thickness. J Power Sources 134:148–152Google Scholar
- 4.Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Katyayini N (2018) Synthesis of polyaniline / MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25:123Google Scholar
- 5.Fan HS, Wang H, Zhao N, Xu J, Pan F (2014) Nano-porous architectore of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Sci Rep 4(article number):1–7Google Scholar
- 6.Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671Google Scholar
- 7.Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide / polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306Google Scholar
- 8.Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830PubMedGoogle Scholar
- 9.Mini PA, Balakrishnan A, Nair SV, Subramanian KRV (2011) Highly supercapacitive electrodes made of graphene poly(pyrrole). Chem Commun 47:5733–5755Google Scholar
- 10.Wang H, Hao Q, Yang LXL, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161Google Scholar
- 11.Liu S, Tian J, Wang L, Luo Y, Lu W, Sun X (2011) Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens Bioelectron 26:4491–4496PubMedGoogle Scholar
- 12.Shang L, Li Z, Meng A, Xu Q (2018) Ultrafast responsive and higly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@PEDOT-rGO nanocomposite. Sensors Actuators B Chem 254:1206–1215Google Scholar
- 13.Zhang XY, Li HP, Cui XL, Lin YH (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806Google Scholar
- 14.Zhang N, Zhang YH, Pan XY, Yang MQ, Xu YJ (2012) Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J Phys Chem C 116:18023–18031Google Scholar
- 15.Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedGoogle Scholar
- 16.Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224PubMedGoogle Scholar
- 17.Zhu Y, Murali S, Stoller MD, Garesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommas M, Su D, Stach EA, Ruoff RS (2011) Carbon based supercapacitors produced by activation of graphene. Science 332:1537–1541PubMedGoogle Scholar
- 18.Si W, Lei W, Han Z, Zhang Y, Hao Q, Xia M (2014) Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites. Sensors Actuators B Chem 193:823–829Google Scholar
- 19.Lu L, Zhang Q, Xu J, Wen Y, Duan X, Yu H, Wu L, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly(3-4 ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sensors Actuators B Chem 181:567–574Google Scholar
- 20.Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM (2013) A review on synthesis of nano-TiO2 via different methods. Journal of Nanostructures 3:1–9Google Scholar
- 21.Stengl V, Bakardjieva S, Grygar TM, Bludska J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanved photocatalytic materials. Chem Cent J 7:41–53PubMedPubMedCentralGoogle Scholar
- 22.Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad SK (2007) Sonochemical preparation of TiO2 nanoparticles. Mat Let 61:4559–4561Google Scholar
- 23.Shinde PS, Bhosale CH (2008) Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. J Anal Appl Pyrolysis 82:83–88Google Scholar
- 24.Andersson M, Oesterlund L, Ljungstroem S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679Google Scholar
- 25.Tan WW, Chen JM, Zhou XW, Zhong JB, Lin YA, Li XP, Xiao XR (2009) Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J Solid State Electrochem 13:651–656Google Scholar
- 26.Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C (2005) Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J Am Ceram Soc 88:2639–2641Google Scholar
- 27.Groenendaal LB, Zotti G, Aubert PH, Waybright SM, Reynolds JR (2003) Electrochemistry of poly(3,4- alkylenedioxythiophene) derivatives. Adv Mater 15:855–879Google Scholar
- 28.Ha YH, Nikolov N, Plooack SK, Mastrangelo J, Martin BD, Shashidhar R (2004) Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv Funct Mater 14:615–622Google Scholar
- 29.Biancardo M, West K, Krebs FC (2007) Quasi-solid state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies. J Photochem Photobiol A Chem 187:395–401Google Scholar
- 30.Ahmad S, Deepa M, Singh S (2007) Electrochemical synthesis and surface characterization of poly(3,4-ethylenedioxythiophene) films grown in an ionic liquid. Langmuir 23:11430–11433PubMedGoogle Scholar
- 31.Jin L, Wang T, Feng ZQ, Leach MK, Wu JH, Mo SJ, Jiang Q (2013) A facile approach for the fabrication of core-shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility. J Mat Chem B 1:1818–1825Google Scholar
- 32.Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibers and polyaniline / multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068Google Scholar
- 33.Saxena AP, Deepa M, Joshi AG, Bhandari S, Srivastava AK (2011) Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl Mater Interfaces 3:1115–1126PubMedGoogle Scholar
- 34.Alvi F, Ram MK, Basrayaka PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene-pdyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412Google Scholar
- 35.Mcgrail BT, Rodier BJ, Pentzer E (2014) Rapid functionalization of graphene oxide in water. Chem Mater 26:5806–5811Google Scholar
- 36.Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nquyen ST, Ruoff RS (2006) Graphene based composite materials. Nature 442:282–286Google Scholar
- 37.Mustafa MN, Shafie S, Zainal Z, Sulaiman Y (2017) Poly(3,4-ethylenedioxythiophene) doped with various carbon-based materials as counter electrodes for dye sensitized solar cells. Mater Des 136:249–257Google Scholar
- 38.Mustafa MN, Shafie S, Zainal Z, Sulaiman Y (2017) A novel poly(3,4-ethylenedioxythiophene)-graphene oxide / Titanium dioxide composites counter electrode for dye-sensitized solar cell. J Nanomater Article number: 4045672Google Scholar
- 39.Dobrzanski LA, Prokowicz MPV, Drygala A, Wierzbicka A, Lukaszkowicz K, Szindler M (2017) Carbon nanomaterials application as a counter electrode for dye-sensitized solar cells. Arch Metall Mater 62:27–32Google Scholar
- 40.Morais A, Alves JPC, Lima FAS, Lira-Cantu M, Nogueira AF (2015) Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers. J Photon Energy 5, 057408(Article number)Google Scholar
- 41.Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) / graphene composites and their applications in energy harvesting systems. Nano Res 7:717–730Google Scholar
- 42.El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NAM (2015) TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64Google Scholar
- 43.Chen Y, Xu J, Mao Y, Yang Y, Yang W, Li S (2013) Electrochemical performance of graphene -polyethylenedioxythiophene nanocomposites. Mater Sci Eng B 178:1152–1157Google Scholar
- 44.Lee S, Cho MS, Lee H, Nam JD, Lee Y (2012) A facile synthetic route for well defined multilayer films of graphene and PEDOT via on electrochemical method. J Mater Chem 22:1899–1903Google Scholar
- 45.Wang M, Jamal R, Wang Y, Yang L, Liu YF, Abdiryim T (2015) Functianalization of graphene oxide and its composite with poly(3,4-ethylenedioxythiophene) as electrode material for supercapacitors. Nanoscale Res Lett 10:370–381PubMedPubMedCentralGoogle Scholar
- 46.Liu K, Hu ZL, Xue R, Zhang JR, Zhu JJ (2008) Electrpolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J Power Sources 179:858–862Google Scholar
- 47.Tang P, Hu G, Gao YJ, Li WJ, Yao SY, Liu ZY, Ma D (2014) The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials. Sci Rep 4:5901–5908PubMedPubMedCentralGoogle Scholar
- 48.Romadoss A, Kim SJ (2013) Improved activity of a graphene-TiO2 hybrid electrode in electrochemical supercapacitor. Carbon 63:434–445Google Scholar
- 49.Dalal J, Gupta A, Lather S, Singh K, Dhawan SK, Ohlan A (2016) Poly(3,4-ethylenedioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding. J Alloys and Compd 682:52–60Google Scholar
- 50.Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core-shell structured poly(3,4-ethylenedioxythiophene)-barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933PubMedGoogle Scholar
- 51.Liu Y, Sun D, Askari S, Patel J, Macias-Montero M, Mitra S, Zhang R, Lin WF, Mariotti D, Maguire P (2015) Enhanced dispersion of TiO2 nanoparticles in a TiO2/PEDOT:PSS hybrid nanocomposite via plasma-liquid interactions. Sci Rep 5:15765–15776PubMedPubMedCentralGoogle Scholar
- 52.Balkan T, Sarac AS (2017) Morphological effect of composite TiO2 nanorod-TiO2 nanoparticle / PEDOT:PSS electrodes on triiodide reduction. Express Polym Lett 11:106–116Google Scholar
- 53.Jian JM, Guo XS, Lin LW, Cai Q, Cheng J, Li JP (2013) Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sensors Actuators B Chem 178:279–288Google Scholar
- 54.Cho W, We J, Shim BS, Kuon W, Mastroianni SE, Young WS, Kuo CC, Epps TH, Martin DC (2015) Synthesis and characterization of bicontinuous cubic poly(3,4-ethylenedioxythiophene) gyroid (PEDOT GYR) gels. Phys Chem Chem Phys 17:5115–5123PubMedPubMedCentralGoogle Scholar
- 55.Shin HJ, Jean SS, Im SS (2011) CNT/PEDOT core-shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth Met 161:1284–1288Google Scholar
- 56.Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578PubMedGoogle Scholar
- 57.Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @ rGO@ TiO2-catalyzed photo-fentonsystem. Nature 5:10632–10642Google Scholar
- 58.Deng F, Pei X, Luo Y, Luo X, Dionysiou DD, Wu S, Luo S (2016) Fabrication of hierarchically porous reduced graphene oxide / SnIn4S8 composites bu a low-temperature co-precipitation strategy and their excellent visible photocatalytic mineralization performance. Catalysts 6:113–131Google Scholar
- 59.Nguyen-Phan TD, Pham VH, Chung JS, Chowalla M, Asefa T, Kim WJ, Shin EW (2014) Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Appl Catal A Gen 473:21–30Google Scholar
- 60.Sharma A, Lee BK (2016) Integrated ternary nanocomposite of TiO2 / NiO / reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J Environ Manag 181:563–573Google Scholar
- 61.Zhang J, Xiong Z, Zhao XS (2011) Graphene-metal oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640Google Scholar
- 62.Zhang Y, Zhou Z, Chen T, Wang H, Lu W (2014) Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26:2114–2122Google Scholar
- 63.Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35:2120–2129PubMedGoogle Scholar
- 64.Pham TA, Kumar NA, Jeong YT (2010) Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synth Met 160:2028–2036Google Scholar
- 65.Zhang Y, Zhou Z, Chen T, Wang H, Lu W (2014) Graphene TiO2 nanocomposites with photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26:2114–2122Google Scholar
- 66.Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380Google Scholar
- 67.Guo F, Creighton M, Chen Y, Hurt R, Kütaots I (2014) Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 66:476–484PubMedPubMedCentralGoogle Scholar
- 68.Zhang L, Jamal R, Zhao Q, Wang M, Abdiryim T (2015) Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Res Lett 10:148PubMedPubMedCentralGoogle Scholar
- 69.Ebrahimi S, Nasiri M, Agbolaghi S, Abbasi F, Sarvari R (2018) A focus on polystyrene tacticity in synthesized conductive PEDOT:PSS thin films. J Polym Res 25:236Google Scholar
- 70.Haddad MY, Alharbi HF, Karim MR, Aijaz MO, Alharthi NH (2018) Preparation of TiO2 incorporated polyacylonitrile electrospun nanofibers for adsorption of heavy metal ions. J Polym Res 25(2018):218Google Scholar
- 71.Ramadoss A, Kim JS (2013) Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445Google Scholar
- 72.Thien GSH, Omar FS, Blya NISA, Chiu WS, Lim HN, Yousefi R, Sheini FJ, Huang NM (2014) Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed (0.01) facets and its photoelectrochemical response. Int J Photoenergy. Article number 650583Google Scholar
- 73.Stengl V, Bakardjieva S, Grygar TM, Bludska J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Central J 7:41–53Google Scholar
- 74.Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620Google Scholar
- 75.Ning X, Zhoung W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2:8859–8867Google Scholar
- 76.Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Metals 209:68–73Google Scholar
- 77.Vigneshwaran P, Kandiban M, Kumar NS, Venkatachalam V, Jayavel R, Potheher IV (2016) A study on the synthesis and charecterization of CoMn2O4 electrode material for supercapacitor aplications. J Mater Sci Mater Electron 27(5):4653–4658Google Scholar
- 78.Qian A, Zhuo K, Choi BN, Lee SJ, Bae JW, Yoo PJ, Chung CH (2016) Capacitance enhancement in supercapacitors by incorporating ultra-long hydrated vanadium-oxide nanobelts into graphene. J Alloys Compds 688:814–821Google Scholar
- 79.Shaheen W, Warsi MF, Shahid M, Khan MA, Asghar M, Ali Z, Sarfraz M, Anwar H, Nadeem M, Shakir I (2016) Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta 219:330–338Google Scholar
- 80.Ates M, Uludag N (2012) Synthesis of 5-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl) pentane-1-amine and electrochemical impedance spectroscopy. Polym Plastics Technol Eng 51:640–646Google Scholar
- 81.Buller S, Karden E, Kok D, De Doncker RW (2002) Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans Ind Appl 38:1622–1626Google Scholar
- 82.Li HL, Wang JX, Chu Q, Wang Z, Zhang FB, Wang SC (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586Google Scholar
- 83.Gopiraman M, Deng D, Kim BS, Chung IIIM, Kim IS (2017) Three-dimensional cheese-like carbon architecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitor. Appl Surf Sci 409:52–59Google Scholar
- 84.Jiang F, Zhou T, Tan S, Zhu Y, Liu Y, Yuan D (2009) Porous polypyrrole prepared by using nanoscale calcium carbonate as a core for supercapacitance materials. Int J Electrochem Sci 4:1541–1547Google Scholar
- 85.Liu DY, Reynolds JR (2010) Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl Mater Interfaces 2:3586–3593PubMedGoogle Scholar
- 86.Lehtimaki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 7:22137–22147PubMedGoogle Scholar
- 87.Zubair NA, Rahman NA, Lim HN, Sulaiman Y (2017) Production of conductive PEDOT- coated PVA-GO composite nanofibers. Nanoscale Research Letters 12(Article number):113PubMedPubMedCentralGoogle Scholar
- 88.Drummond R, Zhao S, Howey DA, Durcan SR (2017) Circuit synthesis of electrochemical supercapacitor models. J Energ Stor 10:48–55Google Scholar