Advertisement

Journal of Polymer Research

, 26:31 | Cite as

Synthesis of water-soluble conjugated polymer, poly(N-3-sulfopropylaniline) and the study of its glucose sensing property

  • Sumana Pal
  • Debiprasad Roy
  • Maloy Kr. Mondal
  • Pranesh ChowdhuryEmail author
ORIGINAL PAPER
  • 51 Downloads

Abstract

A water-soluble conjugated polymer, poly(N-3-sulfopropylaniline) (PSPA) with 7–10 controlled repeating units has been synthesized through oxidative polymerization of sulfopropylaniline (SPA) monomer, which is prepared by N-alkylation of aniline using 3-propane sultone. The glass transition temperature (Tg), thermal stability, molecular weight and size distribution of the synthesized polymer were investigated by DSC, TGA and MALDI TOFF respectively. The spectral (UV-Vis, PL, NMR, FTIR) analysis has been done to develop a facile colorimetric method to sense glucose (a biomarker of diabetes). The synthesized polymers could detect glucose up to nanomolar (10−9 M), which are 106 fold less than the level of a diabetic patient (4 × 10−3-9 × 10−3 M). It is also observed that the naked eye can sense up to decimolar (10−1 M) level. The polymerization process and the chemistry of colorimetric sensing are explained through spectral and cyclic voltammetry analysis. The polymerization and the sensing of glucose occurred through the electron transfer dependent color change processes.

Graphical abstract

Keywords

Polymerization Thermal analysis Spectroscopy Glucose sensing 

Notes

Acknowledgements

We gratefully acknowledge the financial support provided by CSIR (Project no. 029(0331)/17/EMR-II).

Supplementary material

10965_2018_1691_MOESM1_ESM.docx (7.9 mb)
ESM 1 (DOCX 8045 kb)

References

  1. 1.
    Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chem Rev 112:4687–4735CrossRefGoogle Scholar
  2. 2.
    Xie J, Gu P, Zhang Q (2017) Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Letter 2:1985–1996CrossRefGoogle Scholar
  3. 3.
    Xie J, Zhao C, Lin Z, Gu P, Zhang Q (2016) Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells. Chem Asian J 11(10):1489–1511CrossRefGoogle Scholar
  4. 4.
    Xiea J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4:7091–7106CrossRefGoogle Scholar
  5. 5.
    Wu W, Bazan GC, Liu B (2017) Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy. Chem 2:760–790CrossRefGoogle Scholar
  6. 6.
    Wu J., Rui X., Wang C., Pei W. B., Lau R., Yan Q., Zhang Q., (2015) Adv Energy Mater 5(9): 1402189Google Scholar
  7. 7.
    Traina CA, Bakus II RC, Bazan GC (2011) Design and Synthesis of Monofunctionalized, Water-Soluble Conjugated Polymers for Biosensing and Imaging Applications. J Am Chem Soc 133:12600–12607CrossRefGoogle Scholar
  8. 8.
    Li X, Wang M, Tan H, Yang Q, Wang A, Bai L, Zhao H, Wu Y (2015) Preparation of the Water-Soluble Pyrene-Containing Fluorescent Polymer by One-Pot Method. Polymers 7:2625–2637CrossRefGoogle Scholar
  9. 9.
    Mohsen R, Alexander BD, Richardson SCW, Mitchell JC, Diab AA, Snowden MJ (2016) J of Nanomed. Nanotechnol 7:1000363Google Scholar
  10. 10.
    Inal S, Kolsch JD, Sellrie F, Schenk JA, Wischerhoff E, Laschewsky A, Neher D (2013) A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein. J Mater Chem B 1:6373–6381CrossRefGoogle Scholar
  11. 11.
    Wang C, Tang Y, Liu Y, Guo Y (2014) Water-Soluble Conjugated Polymer as a Platform for Adenosine Deaminase Sensing Based on Fluorescence Resonance Energy Transfer Technique. Anal Chem 86:6433–6438CrossRefGoogle Scholar
  12. 12.
    Chai R, Xing C, Qi J, Fan Y, Yuan H, Niu R, Zhan Y, Xu J (2016) Water-Soluble Conjugated Polymers for the Detection and Inhibition of Protein Aggregation. Adv Funt Mater 26:9026–9031CrossRefGoogle Scholar
  13. 13.
    Huang B, Gang Z, Yan S, Li Z, Cai J, Wang Z (2017) Water-Soluble Conjugated Polymer as a Fluorescent Probe for Monitoring Adenosine Triphosphate Level Fluctuation in Cell Membranes during Cell Apoptosis and in Vivo. Anal Chem 89:8816–8821CrossRefGoogle Scholar
  14. 14.
    Alizadeh N, Akbarinejad A, Ghoorchian A (2016) Photophysical Diversity of Water-Soluble Fluorescent Conjugated Polymers Induced by Surfactant Stabilizers for Rapid and Highly Selective Determination of 2,4,6-Trinitrotoluene Traces. ACS Appl Mater Interfeces 8:24901–24908CrossRefGoogle Scholar
  15. 15.
    Li K, Liu B (2010) Water-soluble conjugated polymers as the platform for protein sensors. Polym Chem 1:252–259CrossRefGoogle Scholar
  16. 16.
    Antony MJ, Jayakannan N (2011) Polyaniline Nanoscaffolds for Colorimetric Sensing of Biomolecules via Electron Transfer Process. Langmuir 27:6268–6278CrossRefGoogle Scholar
  17. 17.
    Deore BA, Yu I, Freund MS (2004) A Switchable Self-Doped Polyaniline: Interconversion between Self-Doped and Non-Self-Doped Forms. J Am Chem Soc 126:52–53CrossRefGoogle Scholar
  18. 18.
    Das KR, Antony M (2016) J. Polymers 87:215–225CrossRefGoogle Scholar
  19. 19.
    Junkers T, Vandenbergh J, Adriaensens P, Lutsen L, Vanderzande D (2012) Synthesis of poly(p-phenylene vinylene) materials via the precursor routes. Polym Chem 3:275–285CrossRefGoogle Scholar
  20. 20.
    Grazon C, Rieger J, Méallet-Renault R, Charleux B, Clavier G (2013) Ultrabright Fluorescent Polymeric Nanoparticles Made from a New Family of BODIPY Monomers. Macromolecules 46:5167–5176CrossRefGoogle Scholar
  21. 21.
    Lin HK, Chen SA (2000) Synthesis of New Water-Soluble Self-Doped Polyaniline. Macromolecules 33:8117–8118CrossRefGoogle Scholar
  22. 22.
    Chen SA, Hwang GW (1994) Synthesis of Water-Soluble Self-Acid-Doped Polyaniline. J Am Chem Soc 116:7939–7940CrossRefGoogle Scholar
  23. 23.
    Chen SA, Hwang GW (1996) Structure Characterization of Self-Acid-Doped Sulfonic Acid Ring-Substituted Polyaniline in Its Aqueous Solutions and as Solid Film. Macromolecules 29:3950–3955CrossRefGoogle Scholar
  24. 24.
    Malinauskas A, Holze R (1998) Suppression of the “first cycle effect” in self-doped polyaniline. Electrochim Acta 43:515–520CrossRefGoogle Scholar
  25. 25.
    Bergeron J. Y., Chevalier J. W. and Dao L. H.,(1990) J. Chem. Soc., Chem Commun 0: 180–182Google Scholar
  26. 26.
    Yue J, Gordon G, Epstein AJ (1992). Polymer 33:4401–4409CrossRefGoogle Scholar
  27. 27.
    Shaw, T. C. (2016) Preparation of Derivatized polyaniline for biosensing applications. Ph.D Thesis.Clark Atlanta University Google Scholar
  28. 28.
    Munyati MO, Mbozi A, Siamwiza MN, Diale MM (2017) Polyaniline nanoparticles for the selective recognition of aldrin: Synthesis, characterization, and adsorption properties. Synth Met 233:79–85CrossRefGoogle Scholar
  29. 29.
    Roy D, Majhi K, Mondal MK, Saha SK, Sinha S, Chowdhury P (2018) Silicon Quantum Dot-Based Fluorescent Probe: Synthesis Characterization and Recognition of Thiocyanate in Human Blood. ACS Omega 3:7613–−7620CrossRefGoogle Scholar
  30. 30.
    Gregorova A., (2013) Applications of calorimetry in a wide context - differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry, Sunderland UniversityGoogle Scholar
  31. 31.
    Srinivas CH, Srinivasu D, Kavitha B, Narsimlu N, Kumar KS (2012). J Appl Phys 1(5):12–15Google Scholar
  32. 32.
    Parente AH, Marques ETA, Jr Azevedo WM, Diniz FB, Melo EHM, Filho JLL (1992). Appl Biochem Biotechnol 37:267–273CrossRefGoogle Scholar
  33. 33.
    Majumdar G, Goswami M, Sarma TK, Paul A, Chattopadhyay A (2005) Au Nanoparticles and Polyaniline Coated Resin Beads for Simultaneous Catalytic Oxidation of Glucose and Colorimetric Detection of the Product. Langmuir 21:1663–1667CrossRefGoogle Scholar
  34. 34.
    Arslan F, Ustabaş S, Arslan H (2011) An Amperometric Biosensor for Glucose Determination Prepared from Glucose Oxidase Immobilized in Polyaniline-Polyvinylsulfonate Film. Sensors 11:8152–8163CrossRefGoogle Scholar
  35. 35.
    Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 7:3540–3546CrossRefGoogle Scholar
  36. 36.
    Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens Bioelectron 56:77–82CrossRefGoogle Scholar
  37. 37.
    Miao Z, Wang P, Zhong AM, Yang MF, Xu Q, Hao SR, Hu XY (2015) Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyaniline nanocomposites. J Electroanal Chem 756:153–160CrossRefGoogle Scholar
  38. 38.
    Ma Y, Li N, Yang C, Yang X (2005). Colloids Surf A Physicochem Eng Asp 269:1–6CrossRefGoogle Scholar
  39. 39.
    Gopalan AI, Lee KP, Ragupathy D, Lee SH, Lee JW (2009) An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer–silica nanocomposite. Biomaterials 30:5999–6005CrossRefGoogle Scholar
  40. 40.
    Wang Z, Liu S, Wu P, Cai C (2009) Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes. Anal Chem 81:1638–1645CrossRefGoogle Scholar
  41. 41.
    Naaz S, Poddar S, Bayena SP, Mondal MK, Roy D, Mondal SK, Chowdhurya P, Saha SK (2018) Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-molar level glucose sensing and precise determination of blood glucose level. Sensors Actuators B Chem 255:332–340CrossRefGoogle Scholar
  42. 42.
    Chen CH, Kol CJ, Chuang CH, Maol CF, Liao WT, Hsieh CD (2017). J Polym Res 24:10CrossRefGoogle Scholar
  43. 43.
    Varela H, Torresi RM, Buttry DA (2000). J Braz Chem Soc 11:32–38Google Scholar
  44. 44.
    Ito S, Murata K, Teshima S, Aizawa R, Asako Y, Takahashi KB, Hoffman M (1998) Simple synthesis of water-soluble conducting polyaniline. Synth Met 96:161–163Google Scholar
  45. 45.
    Schoolaert E, Hoogenboom R, Clerck KD (2017) Adv. Func. Mater 27:1702646Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Polymer & Nano Research Laboratory, Department of ChemistryVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations