Advertisement

Journal of Polymer Research

, 26:27 | Cite as

Effect of PPR on the pore formation behavior and pore performances of β-iPP microporous membrane used for Lithium-ion battery separator

  • Guan Xu
  • Lei Ding
  • Tong Wu
  • Ming Xiang
  • Feng YangEmail author
ORIGINAL PAPER
  • 52 Downloads

Abstract

In this article, six different PPR content samples were prepared to study the effect of PPR on the pore formation behavior and pore performances of β nucleated isotactic polypropylene microporous membranes used for lithium-ion battery separator. Different scanning calorimetry (DSC) and the wide angle X-ray diffraction (WXRD) results indicate that the PPR slightly inhibits the formation of β-crystal and significantly reduces the melting point of the sample. Furthermore, the morphological evolution of samples with different PPR contents during biaxial stretching is characterized by tensile testing and SEM. As the PPR content increases, the mechanical performance of the sample increases, but the deformation uniformity of the sample decreases. Especially, the deformation of samples with high PPR content is more inhomogeneous and denser regions are generated during the stretching process, which not only broadens the pore size distribution of the sample but also reduces the connectivity between the micropores. Interestingly, samples with low PPR content (less than 30%) and high PPR content (higher than 30%) have different effects on sample porosity and pore connectivity at elevated temperatures. In other words, the microporous membranes of different PPR components have completely different pore shutdown mechanisms at high temperatures.

Keywords

β-iPP PPR Microporous membranes Pore size distribution Shutdown Porosity and pore connectivity 

Notes

Acknowledgments

We would like to express our sincere thanks to the Natural Science Foundation of China for Financial Support (51421061).

References

  1. 1.
    Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103CrossRefGoogle Scholar
  2. 2.
    Zhang H, Zhang Y, Yao Z, John AE, Li Y, Li W, Zhu B (2016) Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim Acta 204:176–182CrossRefGoogle Scholar
  3. 3.
    Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887CrossRefGoogle Scholar
  4. 4.
    Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRefGoogle Scholar
  5. 5.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243CrossRefGoogle Scholar
  7. 7.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176PubMedCrossRefGoogle Scholar
  8. 8.
    Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607CrossRefGoogle Scholar
  9. 9.
    Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRefGoogle Scholar
  10. 10.
    Fang L-F, Shi J-L, Zhu B-K, Zhu L-P (2013) Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries. J Membr Sci 448:143–150CrossRefGoogle Scholar
  11. 11.
    Lee MJ, Hwang J-K, Kim JH, Lim H-S, Sun Y-K, Suh K-D, Lee YM (2016) Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. J Power Sources 305:259–266CrossRefGoogle Scholar
  12. 12.
    Ganesh Venugopal JM, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41CrossRefGoogle Scholar
  13. 13.
    Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRefGoogle Scholar
  14. 14.
    Kitoh K, Nemoto H (1999) 100 Wh large size Li-ion batteries and safety tests. J Power Sources 81-82:887–890CrossRefGoogle Scholar
  15. 15.
    Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30CrossRefGoogle Scholar
  16. 16.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRefGoogle Scholar
  17. 17.
    Wang Q (2015) Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries. Electrochim Acta 182:334–341CrossRefGoogle Scholar
  18. 18.
    Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRefGoogle Scholar
  19. 19.
    Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9CrossRefGoogle Scholar
  20. 20.
    Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica–polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558CrossRefGoogle Scholar
  21. 21.
    Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462PubMedCrossRefGoogle Scholar
  22. 22.
    Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155CrossRefGoogle Scholar
  23. 23.
    Jeon H, Yeon D, Lee T, Park J, Ryou M-H, Lee YM (2016) A water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168CrossRefGoogle Scholar
  24. 24.
    Ding L, Xu G, Ge Q, Wu T, Yang F, Xiang M (2017) Effect of Fumed SiO2 on pore formation mechanism and various performances of β-iPP microporous membrane used for Lithium-ion battery separator. Chin J Polym Sci 36(4):536–545CrossRefGoogle Scholar
  25. 25.
    Kong L, Liu B, Ding J, Yan X, Tian G, Qi S, Wu D (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250CrossRefGoogle Scholar
  26. 26.
    Ji W, Jiang B, Ai F, Yang H, Ai X (2015) Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Adv 5(1):172–176CrossRefGoogle Scholar
  27. 27.
    Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K (2016) Ultrastrong Polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 16(5):2981–2987PubMedCrossRefGoogle Scholar
  28. 28.
    Hu S, Lin S, Tu Y, Hu J, Wu Y, Liu G, Li F, Yu F, Jiang T (2016) Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A 4(9):3513–3526CrossRefGoogle Scholar
  29. 29.
    Lundquist JT, Lundsager CB, Palmer NI, Troffkin HJ (1987) Battery separator. United States Patent 4731304Google Scholar
  30. 30.
    Wei-Ching Yu MWG (1996) Shutdown, bilayer battery separator. United States Patent 5565281AGoogle Scholar
  31. 31.
    Marong Tang RG, RAGOSTA G, CIMMINO S (1983) Journal of materials Science 18: 1031–1038Google Scholar
  32. 32.
    Wayne LD, Leroy KC (1967) Battery separator. United States Patent 3351495Google Scholar
  33. 33.
    Yu W-C, Dwiggins CF (1997) Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby United States Patent 5667911Google Scholar
  34. 34.
    Yu W-C (1997) Shutdown, trilayer battery separator. United States Patent 5691077Google Scholar
  35. 35.
    Yu T-H (2000) Trilayer battery separator. United States Patent 6080507Google Scholar
  36. 36.
    Yu W-C (2005) Continuous methods of making microporous battery separators. United States Patent 6878226Google Scholar
  37. 37.
    Callahan RW, Call RW, Harleson KJ, Yu T-H (2003) Battery separators with reduced splitting propensity. United States Patent 6602593Google Scholar
  38. 38.
    Kawabata K, Abe K (2009) Battery separator and lithium secondary battery. United States Patent 7595130Google Scholar
  39. 39.
    Zhang H-Y, Lv Y (2017) Mechanical properties and crystalline structures of PPR modified by SEBS elastomer and rare-earth β nucleating agent. Chem Pap 71(12):2533–2543CrossRefGoogle Scholar
  40. 40.
    Schammé B, Dargent E, Fernandez-Ballester L (2017) Effect of random ethylene Comonomer on relaxation of flow-induced precursors in isotactic polypropylene. Macromolecules 50(17):6396–6403CrossRefGoogle Scholar
  41. 41.
    Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701CrossRefGoogle Scholar
  42. 42.
    Varga J (2007) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Phys 41(4–6):1121–1171Google Scholar
  43. 43.
    Ding L, Wu T, Yang F, Xiang M (2017) Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polym Int 66(8):1129–1140CrossRefGoogle Scholar
  44. 44.
    Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polym Int 36(4):731–742CrossRefGoogle Scholar
  45. 45.
    Ding L, Wu T, Ge Q, Xu G, Yang F, Xiang M (2017) Investigation of deformation and pore formation in isotactic polypropylene containing active nano-CaCO3. Polym Int 66(11):1498–1509CrossRefGoogle Scholar
  46. 46.
    Zhu W, Zhang X, Zhao C, Wu W, Hou J, Xu M (1996) A novel polypropylene microporous film. Polym Adv Technol 7(9):743–748CrossRefGoogle Scholar
  47. 47.
    Liu S, Zhou C, Yu W (2011) Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci 379(1–2):268–278CrossRefGoogle Scholar
  48. 48.
    Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRefGoogle Scholar
  49. 49.
    Osińska M, Walkowiak M, Zalewska A, Jesionowski T (2009) Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membr Sci 326(2):582–588CrossRefGoogle Scholar
  50. 50.
    Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer. Macromolecules 37(10):3934–3942CrossRefGoogle Scholar
  51. 51.
    Kato S, Tanaka H, Yamanobe T, Uehara H (2015) In situ analysis of melt-drawing behavior of ultrahigh molecular weight polyethylene films with different molecular weights: roles of entanglements on oriented crystallization. J Phys Chem B 119(15):5062–5070PubMedCrossRefGoogle Scholar
  52. 52.
    Li J, Huang Y, Zhang S, Jia W, Wang X, Guo Y, Jia D, Wang L (2017) Decoration of silica nanoparticles on polypropylene separator for Lithium-sulfur batteries. ACS Appl Mater Interfaces 9(8):7499–7504PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations