Journal of Polymer Research

, 26:36 | Cite as

Graphene/carbon nanotubes-supported Ziegler-Natta catalysts for in situ synthesis of mechanically strong, thermally and electrically conductive trans-polyisoprene nanocomposite

  • Lan Cao
  • Tridib K. Sinha
  • Xiaojie Zhang
  • Xiaokang Zhai
  • Chunfu Wang
  • Chengzhong ZongEmail author
  • Jin Kuk KimEmail author


Facile ball milling process is introduced here to prepare an efficient rGO/CNT/MgCl2 supported Ti-based Ziegler-Natta catalyst, for in situ polymerization of isoprene and simultaneous production of rGO/CNT based trans-polyisoprene (TPI) hybrid nanocomposite (having 98% of trans-1,4 structure). Effect of rGO/CNT on the morphological and crystalline properties of the catalyst, along with its efficacy towards the polymerization has been thoroughly investigated by SEM, XRD, FTIR, 1H-NMR, 13C-NMR, etc. Surprisingly, β-crystallinity of TPI nanocomposite increases with increasing rGO/CNT content. Because of increasing crystallinity and presence of homogeneously dispersed rGO/CNT filler, TPI nanocomposite (containing only 2 wt% rGO/CNT) shows improved mechanical property (e.g., increase of 110% modulus at 300% strain), 65% increased thermal conductivity and 109 time increased electrical conductivity.


Ziegler-Natta catalyst Trans-polyisoprene rGO/CNT In situ polymerization 



This work was supported both by the Natural Science Foundation of Shandong Province (project No.: ZR2016XJ002), Republic of China and R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment (Project No.: 2016002240002), Republic of Korea.

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.


  1. 1.
    Tsoukatos T, Pispas S, Hadjichristidis N (2000) Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization. Macromolecules 33:9504–9511CrossRefGoogle Scholar
  2. 2.
    Wang B, Wang Z, Jiang F, Fang H, Wang Z (2014) Synthesis and characterization of MWCNT-graft-polyisoprene via ARGET ATRP. RSC Adv 4:26468–26475CrossRefGoogle Scholar
  3. 3.
    Ouardad S, Wirotius AL, Kostjuk S, Ganachaud F, Peruch F (2015) Carbocationic polymerization of isoprene using cumyl initiators: progress in understanding side reactions. RSC Adv 5:59218–59225CrossRefGoogle Scholar
  4. 4.
    Bellucci FS, de Almeida FCL, Nobre MAL, Rodríguez-Pérez MA, Paschoalini AT, Job AE (2016) Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites Part B 85:196–206CrossRefGoogle Scholar
  5. 5.
    Bunn C (1942). Proc R Soc London, Ser A 180:40–66CrossRefGoogle Scholar
  6. 6.
    Ratri PJ, Tashiro K (2013) Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β-to-α transition of trans-1,4-polyisoprene. Polym J 45:1107–1114CrossRefGoogle Scholar
  7. 7.
    Kent E, Swinney F (1966) Properties and Applications of trans-1,4-Polyisoprene. Ind Eng Chem Res 5:134–138CrossRefGoogle Scholar
  8. 8.
    Jones R, Wei Y, Biomed J (1971) Mater. Res. A 5:19–30Google Scholar
  9. 9.
    Lin GY, Liu SM, Dong FC (2013). App MechaMater 467:146–151Google Scholar
  10. 10.
    Boochathum P, Prajudtake W (2001) Vulcanization of cis- and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Eur Polym J 37:417–427CrossRefGoogle Scholar
  11. 11.
    Jiang H, Yue H, Zhao JY, Sha QE (2012) Molecular Dynamics Simulation of the Mechanical Properties of NR/TPI. Adv Mater Res 560-561:1114–1118CrossRefGoogle Scholar
  12. 12.
    Qu L, Huang G, Nie Y, Wu J, Weng G, Zhang P (2011) Strain-induced crystallization behavior of natural rubber and trans-1,4-polyisoprene crosslinked blends. J Appl Polym Sci 120:1346–1354CrossRefGoogle Scholar
  13. 13.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: Past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  14. 14.
    Dresselhaus M, Dresselhaus G, Charlier J-C, Hernandez E (2004) Philos. Transact. A, math. Phys Eng Sci 362:2065–2098CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2Nanoribbons: High stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744CrossRefGoogle Scholar
  16. 16.
    Tripathi SN, Rao GS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632CrossRefGoogle Scholar
  17. 17.
    Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A 3:24112–24120CrossRefGoogle Scholar
  18. 18.
    Zhang HX, Park JH, Moon YK, Ko EB, Lee Dh, Hu Y, Zhang X, Yoon KB (2017) Preparation of graphene/MgCl2-supported Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization. Chin J Catal 38:131–137CrossRefGoogle Scholar
  19. 19.
    Zhang HX, Park JH, Ko EB, Moon YK, Lee Dh, Hu Y-M, Zhang XQ, Yoon KB (2016) Comparison of the properties of graphene- and graphene oxide-based polyethylene nanocomposites prepared by an in situ polymerization method. RSC Adv 6:73013–73019CrossRefGoogle Scholar
  20. 20.
    Zhang HX, Park JH, Yoon KB (2018) Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts. Compos Sci Technol 154:85–91CrossRefGoogle Scholar
  21. 21.
    Huang BC, China patent CN 85110352, 1985Google Scholar
  22. 22.
    Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:384CrossRefGoogle Scholar
  23. 23.
    Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19:37CrossRefGoogle Scholar
  24. 24.
    Bahri-Laleh N (2016) Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl Surf Sci 379:395–401CrossRefGoogle Scholar
  25. 25.
    Chen X, Qiu M, Ding H, Fu K, Fan Y (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8:5696–5705CrossRefGoogle Scholar
  26. 26.
    Lin X, Shen X, Sun X, Liu X, Wu Y, Wang Z, Kim JK (2016) Graphene Oxide Papers Simultaneously Doped with Mg2+and Cl–for Exceptional Mechanical, Electrical, and Dielectric Properties. ACS Appl. Mater. Inter. 8:2360–2371CrossRefGoogle Scholar
  27. 27.
    Sinha TK, Ghosh SK, Maiti R, Jana S, Adhikari B, Mandal D, Ray SK (2016) Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor. ACS Appl Mater Inter 8:14986–14993CrossRefGoogle Scholar
  28. 28.
    Conti G, Arribas G, Altomare A, Ciardelli F (1994) Influence of ligands and cocatalyst on the activity in ethylene polymerization of soluble titanium complexes. J Mol Catal 89:41–50CrossRefGoogle Scholar
  29. 29.
    D’Amore KS, Thushara A, Piovano M, Causà S, Bordiga, Groppo E (2016). ACS Catal 6:5786–5796CrossRefGoogle Scholar
  30. 30.
    Makhiyanov N (2017). J. Polym. Sci., Part A: Polym Chem 59:269–279Google Scholar
  31. 31.
    Mandelkern L, Quinn Jr F, Roberts D (1956) Thermodynamics of Crystallization in High Polymers: Gutta Percha1,2. JACS 78:926–932CrossRefGoogle Scholar
  32. 32.
    Yao K, Nie H, Liang Y, Qiu D, He A (2015) Polymorphic crystallization behaviors in cis-1,4-polyisoprene/trans-1,4-polyisoprene blends. Polymer 80:259–264CrossRefGoogle Scholar
  33. 33.
    Schilder H, Goodman A, Aldrich W (1974) The thermomechanical properties of gutta-percha. Or Surg Or Med Or Pa 38:109–114CrossRefGoogle Scholar
  34. 34.
    Baboo M, Dixit M, Sharma K, Saxena NS (2011) Mechanical and thermal characterization of cis-polyisoprene and trans-polyisoprene blends. Polym Bull 66:661–672CrossRefGoogle Scholar
  35. 35.
    Baboo M, Dixit M, Sharma K, Saxena NS (2009) The Structure and Thermomechanical Properties of Blends of Trans-polyisoprene with Cis-polyisoprene. Int J Polym Mater 58:636–646CrossRefGoogle Scholar
  36. 36.
    Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479CrossRefGoogle Scholar
  37. 37.
    Ogunsona EO, Misra M, Mohanty AK (2017) Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Adv 7:8727–8739CrossRefGoogle Scholar
  38. 38.
    Li Y, Zhao J, Tang C, He Y, Wang Y, Chen J, Mao J, Zhou Q, Wang B, Wei F, Luo J, Shi G (2016) Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Adv Mater Inter 3:1600700CrossRefGoogle Scholar
  39. 39.
    Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 36:914–944CrossRefGoogle Scholar
  40. 40.
    Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53:3378–3385CrossRefGoogle Scholar
  41. 41.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  42. 42.
    Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H, Li D, Dahmen K (2003). J Appl Polym Sci 94:6034–6039Google Scholar
  43. 43.
    Tjong SC (2012) Polymer composites with carbonaceous nanofillers: properties and applications. John Wiley & SonsGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Lan Cao
    • 1
    • 2
  • Tridib K. Sinha
    • 2
  • Xiaojie Zhang
    • 2
  • Xiaokang Zhai
    • 1
  • Chunfu Wang
    • 1
  • Chengzhong Zong
    • 1
    Email author
  • Jin Kuk Kim
    • 2
    Email author
  1. 1.School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.Elastomer Lab, Department of Materials Engineering and Convergence TechnologyGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations