Advertisement

Journal of Polymer Research

, 26:25 | Cite as

Effect of soft segment content of Pebax® Rnew on the properties of Nylon-6/SMA/PEBA blends

  • Wei-Ming Chen
  • Ming-Chien YangEmail author
  • Shinn-Gwo HongEmail author
  • Yi-Shen Hsieh
ORIGINAL PAPER
  • 47 Downloads

Abstract

To improve the impact property of Nylon 6 at temperature below 0°C, Nylon 6 was toughened by the blending of Pebax® Rnew (PEBA) and compatibilized with poly(styrene-co-maleic anhydride) (SMA). The effect of the content of soft segment of PEBA, polytetramethylene oxide (PTMO), on the toughening properties was investigated. The impact properties of the resulting blends were measured at 23°C and − 20°C. With the increase of PTMO content, the impact strength increased, whereas the tensile and flexural properties decreased. The thermal stability of these blends was not affected significantly. Rheological properties revealed that these blends exhibited predominantly viscous behavior at 240°C. Furthermore, higher PTMO content led to higher storage modulus (G’), lower loss modulus (G”) and complex viscosity (η*). The higher PTMO content of PEBA also improved the toughness more. The DSC results showed that the glass transition temperature (Tg) of Nylon 6 decreased with the increase of PTMO content. The crystallization temperature and the rate of crystallization of the blends were not much affected by the PTMO content, yet the relative amounts of α and γ crystals formed were affected by the type of PEBA added. Based on the Avrami model, the non-isothermal crystallization of Nylon 6 in the blends was a diffusion-controlled crystallization.

Keywords

Nylon 6 Pebax® Rnew Mechanical properties Rheology Thermal behavior 

Notes

References

  1. 1.
    Yu Z, Ou Y, Qi Z, Hu G (1998). J Polym Sci B Polym Phys 36:1987–1994CrossRefGoogle Scholar
  2. 2.
    Li QF, Kim DF, Wu DZ, Lu K, Jin RG (2001). Polym Eng Sci 41:2155–2161CrossRefGoogle Scholar
  3. 3.
    Wang X, Feng W, Li H, Jin R (2003). J Appl Polym Sci 88:3110–3116CrossRefGoogle Scholar
  4. 4.
    Huang JJ, Paul DR (2006). Polymer 47:3505–3519CrossRefGoogle Scholar
  5. 5.
    Kim JG, Lee J, Son Y (2014). Mater Lett 126:43–47CrossRefGoogle Scholar
  6. 6.
    Yu ZZ, Ke YC, Ou YC, Hu GH (2000). J Appl Polym Sci 76:1285–1295CrossRefGoogle Scholar
  7. 7.
    Premphet-Sirisinha K, Chalearmthitipa S (2003). Polym Eng Sci 43:317–328CrossRefGoogle Scholar
  8. 8.
    Borggreve RJM, Gaymans RJ, Schuijer J, Housz JFI (1987). Polymer 28:1489–1496CrossRefGoogle Scholar
  9. 9.
    Wu D, Wang X, Jin R (2004). Eur Polym J 40:1223–1232CrossRefGoogle Scholar
  10. 10.
    Okada O, Keskkula H, Paul DR (2004). J Polym Sci B Polym Phys 42:1739–1758CrossRefGoogle Scholar
  11. 11.
    Wang BB, Wei LX, Hu GS (2008). J Appl Polym Sci 110:1344–1350CrossRefGoogle Scholar
  12. 12.
    Wang Y, Wang W, Peng F, Liu M, Zhao Q, Fu PF (2009). Polym Int 58:190–197CrossRefGoogle Scholar
  13. 13.
    Kumar S, Ramanaiah BV, Maiti SN (2007). Soft Mater 4:85–100CrossRefGoogle Scholar
  14. 14.
    Gonzhlez-Montiel A, Keskkula H, Paul DR (1995). Polymer 36:4621–4637CrossRefGoogle Scholar
  15. 15.
    Lu M, Keskkula H, Paul DR (1995). J Appl Polym Sci 58:1175–1188CrossRefGoogle Scholar
  16. 16.
    Corté L, Beaume F, Leibler L (2005). Polymer 46:2748–2757CrossRefGoogle Scholar
  17. 17.
    Ahn Y, Paul DR (2006). Polymer 47:2830–2838CrossRefGoogle Scholar
  18. 18.
    Tanrattanakul V, Sungthong N, Raksa P (2008). Polym Test 27:794–800CrossRefGoogle Scholar
  19. 19.
    Carone Jr E, Kopacak U, Goncalves MC, Nunes SP (2000). Polymer 41:5929–5935CrossRefGoogle Scholar
  20. 20.
    Banerjee SS, Bhowmick AK (2013). Polymer 54:6561–6571CrossRefGoogle Scholar
  21. 21.
    Kayano Y, Keskkula H, Paul DR (1997). Polymer 38:1885–1902CrossRefGoogle Scholar
  22. 22.
    Wu D, Wang X, Jin R (2006). J Appl Polym Sci 99:3336–3343CrossRefGoogle Scholar
  23. 23.
    Xie T, Yang G (2004). J Appl Polym Sci 93:1446–1453CrossRefGoogle Scholar
  24. 24.
    Huang JJ, Keskkula H, Paul DR (2006). Polymer 47:639–651CrossRefGoogle Scholar
  25. 25.
    Yu H, Zhang Y, Ren W (2009). J Polym Sci B Polym Phys 47:877–887CrossRefGoogle Scholar
  26. 26.
    Liu H, Xie T, Hou L, Ou Y, Yang G (2006). J Appl Polym Sci 99:3300–3307CrossRefGoogle Scholar
  27. 27.
    Yu H, Zhang Y, Ren W, Hoch M, Guo S (2011). J Appl Polym Sci 121:3340–3346CrossRefGoogle Scholar
  28. 28.
    Xu C, Ma J, Li G, Wang N, Zhang Q, Grami ME, Qu X (2017). J Polym Res 24:147CrossRefGoogle Scholar
  29. 29.
    Utracki LA (2003) Polymer Blends Handbook. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  30. 30.
    Newman S, Paul DR (1978) Polymer blends: volumes I and II. Academic Press, New YorkGoogle Scholar
  31. 31.
    Ponnamma D, Sadasivuni KK, Wan C, Thomas S, Alma’adeed MA (2015) Flexible and stretchable electronic composites: electronic applications of polyamide elastomers and its composites. Springer Verlag, BerlinGoogle Scholar
  32. 32.
    Hoffendahl C, Fontaine G, Bourbigot S (2013). Polym Degrad Stabil 98:1247–1255CrossRefGoogle Scholar
  33. 33.
    Todros S, Natali AN, Piga M, Giffin GA, Pace G, Noto VD (2013). Polym Degrad Stabil 98:1126–1137CrossRefGoogle Scholar
  34. 34.
    Chen WM, Yang MC, Hong SG, Hsieh YS (2017). J Polym Res 24:40CrossRefGoogle Scholar
  35. 35.
    Rinawa K, Maiti SN, Sonnier R, Lopez Cuesta JM (2015). Bull Mater Sci 38:1315–1327CrossRefGoogle Scholar
  36. 36.
    Wu S (1985). Polymer 26:1885CrossRefGoogle Scholar
  37. 37.
    Angola JC, Fujita Y, Sakai T, Inoue T (1988). J Polym Sci B Polym Phys 26:807–816CrossRefGoogle Scholar
  38. 38.
    Margolin A, Wu S (1988). Polymer 29:2170CrossRefGoogle Scholar
  39. 39.
    Wu S, Margolin A (1990) Reply to comments. Polymer 31:972–974CrossRefGoogle Scholar
  40. 40.
    Sjooerdsma SD (1989). Polym Commun 30:106Google Scholar
  41. 41.
    Kim BK, Park SJ (1991). J Appl Polym Sci 43:357–363CrossRefGoogle Scholar
  42. 42.
    Nouparvar H, Hassan A, Mohamad Z, Wahit MU (2014). J Elastom Plast 46:269–283CrossRefGoogle Scholar
  43. 43.
    Navid N, Mat UW, Azman H, Shaya M (2011). Key Eng Mater 471-472:518–523CrossRefGoogle Scholar
  44. 44.
    Ogunsona EO, Misra M, Mohanty AK (2017). RSC Adv 7:8727–8739CrossRefGoogle Scholar
  45. 45.
    Thanakkasaranee S, Kim D, Seo J (2018). Polymers 10:225CrossRefGoogle Scholar
  46. 46.
    Lehrle RS, Parsons IW, Rollinson M (2000). Polym Degrad Stabil 67:21–33CrossRefGoogle Scholar
  47. 47.
    Macosko CW (1994) Rheology-principles, measurements, and applications. Wiley-VCHGoogle Scholar
  48. 48.
    Pang H, Liao B, Huang Y, Cong G (2002). J Appl Polym Sci 86:2140–2144CrossRefGoogle Scholar
  49. 49.
    Li X, Ai X, Pan H, Yang J, Gao G, Zhang H, Yang H, Dong L (2018). Polym Advan Technol 29:1706–1717CrossRefGoogle Scholar
  50. 50.
    Latko P, Kolbuk D, Kozera R, Boczkowska A (2016). J Mater Eng Perform 25:68–75CrossRefGoogle Scholar
  51. 51.
    Bourmaud A, Duigou AL, Gourier C, Baley C (2016). Ind Crop Prod 84:151–165CrossRefGoogle Scholar
  52. 52.
    Qi F, Chen N, Wang Q (2017). Mater Des 131:135–143CrossRefGoogle Scholar
  53. 53.
    Ma YL, Hu GS, Ren XL, Wang BB (2007). Mat Sci Eng A-Struct 460-461:611–618CrossRefGoogle Scholar
  54. 54.
    Fornes TD, Paul DR (2003). Polymer 44:3945–3961CrossRefGoogle Scholar
  55. 55.
    Illers KH (1978). Makromol Chem 179(2):497–507CrossRefGoogle Scholar
  56. 56.
    Ren X, Wu G, Zhang X (2011) 2011 2nd international conference on chemistry and chemical engineering. IPCBEE 14:125–129Google Scholar
  57. 57.
    Liu T, Tjiu WC, He C, Na SS, Chung TS (2004). Polym Int 53:392–399CrossRefGoogle Scholar
  58. 58.
    Dasgupta S, Hammond WB, Goddard III WA (1996). J Am Chem Soc 118:12291–12301CrossRefGoogle Scholar
  59. 59.
    Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007). Macromolecules 40(17):6283–6290PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Katoh Y, Okamoto M (2009). Polymer 50:4718–4726CrossRefGoogle Scholar
  61. 61.
    Lam RSH, Rogers MA (2011). Cryst Eng Comm 13:866–875CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, Republic of China
  2. 2.Department of Chemical Engineering and Materials ScienceYuan-Ze UniversityTao-YuanTaiwan, Republic of China

Personalised recommendations