Advertisement

Journal of Polymer Research

, 26:29 | Cite as

Preparation of diamine-based polybenzoxazine coating for corrosion protection on mild steel

  • Rui Zhang
  • Xin LuEmail author
  • Chang Lou
  • Changlu Zhou
  • Zhong Xin
ORIGINAL PAPER
  • 26 Downloads

Abstract

The diamine-based polybenzoxazine (PpC-mda) coating was prepared on mild steel (MS) by spray coating and thermal curing method. The thermal curing process and thermal stability of PpC-mda were studied by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA), respectively. The corrosion resistance properties of PpC-mda coating were investigated by electrochemical measurements. The results revealed that the hydrophobic PpC-mda coating exhibited high corrosion resistance on mild steel with the protection efficiency of 99.93%.

Keywords

Diamine-based polybenzoxazine Corrosion resistance Mild steel 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21776080).

References

  1. 1.
    Döner A, Solmaz R, Özcan M, Kardaş G (2011) Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros Sci 53:2902–2913CrossRefGoogle Scholar
  2. 2.
    Eddy NO, Ebenso EE (2010) Corrosion inhibition and adsorption characteristics of tarivid on mild steel in H2SO4. E-Journal of Chemistry 7:S442–S448CrossRefGoogle Scholar
  3. 3.
    Palomino LEM, Suegama PH, Aoki IV, Pászti Z, de Melo HG (2007) Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1M NaCl. Electrochim Acta 52:7496–7505CrossRefGoogle Scholar
  4. 4.
    Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S (2011) Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros Sci 53:89–98CrossRefGoogle Scholar
  5. 5.
    Saravanan K, Sathiyanarayanan S, Muralidharan S, Azim SS, Venkatachari G (2007) Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Progress in Organic Coatings 59:160–167CrossRefGoogle Scholar
  6. 6.
    Brostow W, Dutta M, Rusek P (2010) Modified epoxy coatings on mild steel: tribology and surface energy. Eur Polym J 46:2181–2189CrossRefGoogle Scholar
  7. 7.
    Amoozadeh SM, Mahdavian M (2015) Synergistic inhibition effect of zinc acetylacetonate and benzothiazole in epoxy coating on the corrosion of mild steel. J Mater Eng Perform 24:2464–2472CrossRefGoogle Scholar
  8. 8.
    González-García Y, González S, Souto RM (2007) Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corros Sci 49:3514–3526CrossRefGoogle Scholar
  9. 9.
    Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2015) A study on the corrosion inhibition properties of silane-modified Fe2O3 nanoparticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J Coat Technol Res 12:277–292CrossRefGoogle Scholar
  10. 10.
    Barletta M, Venettacci S, Puopolo M, Vesco S, Gisario A (2014) Design and manufacturing of protective barriers on Fe 430 B substrates by phenyl methyl polysiloxane coatings: micromechanical response, chemical inertness, and corrosion resistance. J Coat Technol Res 12:333–346CrossRefGoogle Scholar
  11. 11.
    Matin E, Attar MM, Ramezanzadeh B (2015) Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. Progress in Organic Coatings 78:395–403CrossRefGoogle Scholar
  12. 12.
    Wang CF, Chen HY, Kuo SW, Lai YS, Yang P-F (2013) Rapid, low temperature microwave synthesis of durable, superhydrophobic carbon nanotube–polybenzoxazine nanocomposites. RSC Adv 3:9764CrossRefGoogle Scholar
  13. 13.
    Liu J, Lu X, Xin Z, Zhou CL (2013) Synthesis and surface properties of low surface free energy silane-functional polybenzoxazine films. Langmuir 29:411–416CrossRefGoogle Scholar
  14. 14.
    Tseng MC, Liu YL (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51:5567–5575CrossRefGoogle Scholar
  15. 15.
    Zhou CL, Lu X, Xin Z, Liu J (2013) Corrosion resistance of novel silane-functional polybenzoxazine coating on steel. Corros Sci 70:145–151CrossRefGoogle Scholar
  16. 16.
    Escobar J, Poorteman M, Dumas L, Bonnaud L, Dubois P, Olivier MG (2015) Thermal curing study of bisphenol a benzoxazine for barrier coating applications on 1050 aluminum alloy. Progress in Organic Coatings 79:53–61CrossRefGoogle Scholar
  17. 17.
    Raicopol M, Bălănucă B, Sliozberg K, Schlüter B, Gârea SA, Chira N, Schuhmann W, Andronescu C (2015) Vegetable oil-based polybenzoxazine derivatives coatings on Zn–mg–Al alloy coated steel. Corros Sci 100:386–395CrossRefGoogle Scholar
  18. 18.
    Patil DM, Phalak GA, Mhaske ST (2017) Enhancement of anti-corrosive performances of cardanol based amine functional benzoxazine resin by copolymerizing with epoxy resins. Progress in Organic Coatings 105:18–28CrossRefGoogle Scholar
  19. 19.
    Patil DM, Phalak GA, Mhaske ST (2017) Synthesis and characterization of bio-based benzoxazine oligomer from cardanol for corrosion resistance application. J Coat Technol Res 14:517–530CrossRefGoogle Scholar
  20. 20.
    Lu X, Liu Y, Zhang WF, Zhang XY, Zhou CL, Xin Z (2017) Crosslinked main-chain-type polybenzoxazine coatings for corrosion protection of mild steel. J Coat Technol Res 14:937–944CrossRefGoogle Scholar
  21. 21.
    Men W, Lu Z (2007) Synthesis and characterization of 4,4′-diaminodiphenyl methane-based benzoxazines and their polymers. J Appl Polym Sci 106:2769–2774CrossRefGoogle Scholar
  22. 22.
    Liu Y, Li Z, Zhang J, Zhang H, Fan H, Run M (2012) Polymerization behavior and thermal properties of benzoxazine based on 4,4′-diaminodiphenyl ether. J Therm Anal Calorim 111:1523–1530CrossRefGoogle Scholar
  23. 23.
    Liu Y, Liao C, Hao Z, Luo X, Jing S, Run M (2014) The polymerization behavior and thermal properties of benzoxazine based on o-allylphenol and 4,4′-diaminodiphenyl methane. React Funct Polym 75:9–15CrossRefGoogle Scholar
  24. 24.
    Poorteman M, Renaud A, Escobar J, Dumas L, Bonnaud L, Dubois P, Olivier MG (2016) Thermal curing of Para-phenylenediamine benzoxazine for barrier coating applications on 1050 aluminum alloys. Progress in Organic Coatings 97:99–109CrossRefGoogle Scholar
  25. 25.
    Bălănucă B, Raicopol M, Maljusch A, Garea S, Hanganu A, Schuhmann W, Andronescu C (2015) Phenolated oleic acid based polybenzoxazine derivatives as corrosion protection layers. ChemPlusChem 80:1170–1177CrossRefGoogle Scholar
  26. 26.
    Zhou CL, Lin JP, Lu X, Xin Z (2016) Enhanced corrosion resistance of polybenzoxazine coatings by epoxy incorporation. RSC Adv 6:28428–28434CrossRefGoogle Scholar
  27. 27.
    Cal E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754CrossRefGoogle Scholar
  28. 28.
    Altinkok C, Kiskan B, Yagci Y (2011) Synthesis and characterization of sulfone containing main chain oligobenzoxazine precursors. J Polym Sci A Polym Chem 49:2445–2450CrossRefGoogle Scholar
  29. 29.
    Zúñiga C, Larrechi MS, Lligadas G, Ronda JC, Galià M, Cádiz V (2011) Polybenzoxazines from renewable diphenolic acid. J Polym Sci A Polym Chem 49:1219–1227CrossRefGoogle Scholar
  30. 30.
    Aydogan C, Kiskan B, Hacioglu SO, Toppare L, Yagci Y (2014) Electrochemical manipulation of adhesion strength of polybenzoxazines on metal surfaces: from strong adhesion to dismantling. RSC Adv 4:27545CrossRefGoogle Scholar
  31. 31.
    Low HY, Ishida H (1998) Mechanistic study on the thermal decomposition of polybenzoxazines: effects of aliphatic amines. Journal of Polymer Science Part B Polymer Physics 36:1935–1946CrossRefGoogle Scholar
  32. 32.
    Lu X, Liu Y, Zhou CL, Zhang WF, Xin Z (2016) Corrosion protection of hydrophobic bisphenol A-based polybenzoxazine coatings on mild steel. RSC Adv 6:5805–5811CrossRefGoogle Scholar
  33. 33.
    Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254CrossRefGoogle Scholar
  34. 34.
    Wang P, Zhang D, Lu Z (2015) Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence. Corros Sci 90:23–32CrossRefGoogle Scholar
  35. 35.
    Amirudin A, Thieny D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress in Organic Coatings 26:1–28CrossRefGoogle Scholar
  36. 36.
    Mcintyre JM, Pham HQ (1996) Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Progress in Organic Coatings 27:201–207CrossRefGoogle Scholar
  37. 37.
    Kannan MB, Gomes D, Dietzel W, Abetz V (2008) Polyoxadiazole-based coating for corrosion protection of magnesium alloy. Surf Coat Technol 202:4598–4601CrossRefGoogle Scholar
  38. 38.
    Qian M, McIntosh Soutar A, Tan XH, Zeng XT, Wijesinghe SL (2009) Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films 517:5237–5242CrossRefGoogle Scholar
  39. 39.
    Zuo Y, Pang R, Li W, Xiong JP, Tang YM (2008) The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corros Sci 50:3322–3328CrossRefGoogle Scholar
  40. 40.
    Li Y, Yang Z, Qiu H, Dai Y, Zheng Q, Li J, Yang J (2014) Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J Mater Chem A 2:14139CrossRefGoogle Scholar
  41. 41.
    Mahdavian M, Attar MM (2006) Another approach in analysis of paint coatings with EIS measurement: phase angle at high frequencies. Corros Sci 48:4152–4157CrossRefGoogle Scholar
  42. 42.
    Liu JG, Gong GP, Yan CW (2005) EIS study of corrosion behaviour of organic coating/Dacromet composite systems. Electrochim Acta 50:3320–3332CrossRefGoogle Scholar
  43. 43.
    Liu X, Xiong J, Lv Y, Zuo Y (2009) Study on corrosion electrochemical behavior of several different coating systems by EIS. Progress in Organic Coatings 64:497–503CrossRefGoogle Scholar
  44. 44.
    T.C. Huang, Y.A. Su, T.C. Yeh, H.Y. Huang, C.P. Wu, K.Y. Huang, Y.C. Chou, J.M. Yeh, Y. Wei, Advanced anticorrosive coatings prepared from electroactive epoxy–SiO2 hybrid nanocomposite materials, Electrochim Acta, 56 (2011) 6142–6149Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Rui Zhang
    • 1
  • Xin Lu
    • 1
    Email author
  • Chang Lou
    • 1
  • Changlu Zhou
    • 1
  • Zhong Xin
    • 1
  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations