Journal of Polymer Research

, 26:32 | Cite as

A systematic study of macrodiols and poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) with different ether [CH2CH2O]m groups. Synthesis and characterization

  • José E. BáezEmail author
  • Ángel Marcos-Fernández
  • Rodrigo Navarro
  • Carolina García
  • Aurelio Ramírez-Hernández
  • Karla J. Moreno


α,ω-Hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) was synthesized by ring-opening polymerization (ROP) of ε-caprolactone (ε-CL).The ROP was catalyzed by ammonium decamolybdate in the presence of ether diols [HO-(CH2-CH2-O)m-H] (where m = 2, 3, 4, 5, 6, and 8) as initiators. The homopolymer HOPCLOH was obtained with the ether group (EG) [HO-PCL-(CH2-CH2-O)m-PCL-OH (HOPCLOH)] as part of the backbone of the polyester with a systematic increase in the segment of the EG. The number average molecular weight (Mn) for all samples were similar in the range of oligomers (Mn = 1240–1510 Da) to have a significant effect of the EG. The effect of the EG on the physical properties was evaluated by differential scanning calorimetry (DSC) where the crystallinity of HOPCLOH and the size of the EG showed a relationship inversely proportional. Poly(ester-urethanes) (PEUs) derived from HOPCLOH exhibited an elastomeric behavior, where long chains of EG induced poor mechanical properties. The use and selection of the ether diols as initiators in the ROP of CL to synthesize HOPCLOH was not trivial because these EG substituents affected the crystallinity, and the mechanical properties of their PEUs.


Poly(ε-caprolactone) Hydroxy telechelic polyester Ether group Poly(ester-urethane) Crystallinity 



José E. Báez thanks the “Consejo Nacional de Ciencia y Tecnología” (CONACYT) (Proyecto CONACYT Ciencia Básica 284893), Dirección de Apoyo a la Investigación y al Posgrado (DAIP) at University of Guanajuato (UG), and “Sistema Nacional de Investigadores (SNI)” in México for financial support of the work. José E. Báez also thanks to Ángel Marcos-Fernández for believing in these ideas and providing financial support for the reagents through the project MAT2017-87204-R from the Ministry of Economy and Competitiveness (MINECO) of Spain. José E. Báez also thanks to the UG for the recent opportunity to work as an Assistant Professor. Marvin was used for drawing, displaying, and characterizing chemical structures, substructures, and reactions (Marvin Sketch 6.1.3, 2013, ChemAxon;; a free software program with an academic license was provided by ChemAxon. Finally, José E. Báez thanks to Gema Reina Mendieta for the acquisition of the NMR spectra.


  1. 1.
    Alger M (2017) Polymer science dictionary3rd edn. Dordrecht, SpringerCrossRefGoogle Scholar
  2. 2.
    Jakisch L, Garaleh M, Schäfer M, Mordvinkin A, Saalwächter K, Böhme F (2018). Macromol Chem Phys 219:1700327CrossRefGoogle Scholar
  3. 3.
    Báez JE, Marcos-Fernández A, Galindo-Iranzo P (2011). Polym-Plast Technol Eng 50:839–850CrossRefGoogle Scholar
  4. 4.
    Jeong K-H, Park D, Lee Y-C (2017). J Polym Res 24:112CrossRefGoogle Scholar
  5. 5.
    Erdagi SI, Doganci E, Uyanik C, Yilmaz F (2016). React Funct Polym 99:49–58CrossRefGoogle Scholar
  6. 6.
    Uyar Z, Öncel A (2018). J Polym Res 25:245CrossRefGoogle Scholar
  7. 7.
    Lu Y, Cao J, Huang J, Xiong Z, Chen H, Xiong C, Chen D (2017). J Polym Res 24:200CrossRefGoogle Scholar
  8. 8.
    Mandal M, Monkowius U, Chakraborty D (2016). J Polym Res 23:220CrossRefGoogle Scholar
  9. 9.
    Báez JE, Marcos-Fernández A, Lebrón-Aguilar R, Martínez-Richa A (2006). Polymer 47:8420–8429CrossRefGoogle Scholar
  10. 10.
    Sung S-J, Yun YH, Lee S, Park J-K, Kim D-H, Cho KY (2010). React Funct Polym 70:622–629CrossRefGoogle Scholar
  11. 11.
    Guillaume SM (2013). Eur Polym J 49:768–779CrossRefGoogle Scholar
  12. 12.
    Báez JE, Marcos-Fernández A, Martínez-Richa A, Galindo-Iranzo P (2017). Polym-Plast Technol Eng 56:889–898CrossRefGoogle Scholar
  13. 13.
    Báez JE, Marcos-Fernández A, Galindo-Iranzo P (2011). J Polym Res 18:1137CrossRefGoogle Scholar
  14. 14.
    Báez JE, Marcos-Fernández A, Navarro R, García C (2017). J Polym Res 24:199CrossRefGoogle Scholar
  15. 15.
    Báez JE, Marcos-Fernández A (2011). Int J Polym Anal Charact 16:269–276CrossRefGoogle Scholar
  16. 16.
    Takizawa K, Tang C, Hawker CJ (2008). J Am Chem Soc 130:1718–1726CrossRefGoogle Scholar
  17. 17.
    Báez JE, Zhao R, Shea KJ (2017). Ind Eng Chem Res 56:10366–10383CrossRefGoogle Scholar
  18. 18.
    Huang M-H, Li S, Coudane J, Vert M (2003). Macromol Chem Phys 204:1994–2001CrossRefGoogle Scholar
  19. 19.
    Huang M-H, Li S, Vert M (2004). Polymer 45:8675–8681CrossRefGoogle Scholar
  20. 20.
    Naguib HF, Abdel Aziz MS, Sherif SM, Saad GR (2011). J Polym Res 18:1217–1227CrossRefGoogle Scholar
  21. 21.
    Báez JE, Marcos-Fernández A (2012). React Funct Polym 72:349–357CrossRefGoogle Scholar
  22. 22.
    Báez JE, Ramírez D, Valentín JL, Marcos-Fernández A (2012). Macromolecules 45:6966–6980CrossRefGoogle Scholar
  23. 23.
    Ping P, Wang W, Chen X, Jing X (2005). Biomacromolecules 6:587–592CrossRefGoogle Scholar
  24. 24.
    Panwiriyarat W, Tanrattanakul V, Pilard J-F, Pasetto P, Khaokong C (2013). J Appl Polym Sci 130:453–462CrossRefGoogle Scholar
  25. 25.
    Ma Z, Hong Y, Nelson DM, Pichamuthu JE, Leeson CE, Wagner WR (2011). Biomacromolecules 12:3265–3274CrossRefGoogle Scholar
  26. 26.
    Lin C-Y, Hsu S-H (2015). J Biomed Mater Res B Appl Biomater 103B:878–887CrossRefGoogle Scholar
  27. 27.
    Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA (2007). Biomaterials 28:5407–5417CrossRefGoogle Scholar
  28. 28.
    Rattanapan S, Pasetto P, Pilard J-F, Tanrattanakul V (2016). J Polym Res 23:182CrossRefGoogle Scholar
  29. 29.
    Wu C-L, Tsou C-Y, Tseng Y-C, Lee H-T, Suen M-C, Gu J-H, Tsuo C-H, Chiu S-H (2016). J Polym Res 23:263CrossRefGoogle Scholar
  30. 30.
    Yuan J, Sang Z, Zhao J, Zhang Z, Zhang J, Cheng J (2017). J Polym Res 24:88CrossRefGoogle Scholar
  31. 31.
    Li SQ, Zhao JB, Zhang ZY, Zhang JY, Yang WT (2015). Polymer 57:164–172CrossRefGoogle Scholar
  32. 32.
    Li SQ, Sang ZH, Zhao JB, Zhang ZY, Cheng J, Zhang JY (2016). Eur Polym J 84:784–798CrossRefGoogle Scholar
  33. 33.
    Báez JE, Martínez-Rosales M, Martínez-Richa A (2003). Polymer 44:6767–6772CrossRefGoogle Scholar
  34. 34.
    Dey P, Hemmati-Sadeghi S, Haag R (2016). Polym Chem 7:375–383CrossRefGoogle Scholar
  35. 35.
    Chausson M, Fluchère A-S, Landreau E, Aguni Y, Chevalier Y, Hamaide T, Adbul-Malak N, Bonnet I (2008). Int J Pharm 362:153–162CrossRefGoogle Scholar
  36. 36.
    Báez JE, Ramírez-Hernández A, Marcos-Fernández A (2011). Int J Polym Anal Charact 16:377–389CrossRefGoogle Scholar
  37. 37.
    Sigma-Aldrich is now Merck. Thermal transitions of homopolymers: glass transition & melting point. Accessed 03 Dec 2018
  38. 38.
    Piao L, Dai Z, Deng M, Chen X, Jing X (2003). Polymer 44:2025–2031CrossRefGoogle Scholar
  39. 39.
    Zamani S, Khoee S (2012). Polymer 53:5723–5736CrossRefGoogle Scholar
  40. 40.
    Báez JE, Marcos-Fernández A, Navarro, R. Chem Pap accepted manuscriptGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Guanajuato (UG)GuanajuatoMexico
  2. 2.Department of Polymer Physics, Elastomers and Applications EnergyInstitute of Polymer Science and Technology, CSICMadridSpain
  3. 3.Laboratory of Characterization of PolymersInstitute of Polymer Science and Technology, CSICMadridSpain
  4. 4.Universidad del Papaloapan (UNPA)TuxtepecMexico
  5. 5.Tecnológico Nacional de México/Instituto Tecnológico de CelayaCelaya, GtoMexico

Personalised recommendations