Enhanced flame retardancy and smoke suppression of polypropylene by incorporating zinc oxide nanowires

  • Junhong Guo
  • Guotian Liu
  • Yongliang Guo
  • Li Tian
  • Xuemei Bao
  • Xiujun Zhang
  • Baoping Yang
  • Jinfeng CuiEmail author


In this work, zinc oxide (ZnO) nanowires were prepared via hydrothermal method. They were added into polypropylene (PP) with different mass fractions by melt blending method. Thermal stability of ZnO nanowires/PP nanocomposites was investigated through thermogravimetric analysis (TGA). The flame retardant and smoke suppression performances of the nanocomposites were characterized by microscale combustion calorimeter (MCC) and smoke density tester, respectively. The results showed that the prepared ZnO nanowires/PP nanocomposites possessed good thermal stability, flame retardant and smoke suppression performances. With the 30 wt% addition of ZnO nanowires, the onset degradation temperature (Td5) and maximum weight loss temperature (Tmax) of nanocomposite were increased by 34.6 °C and 20.8 °C compared to pure PP. The peak heat release rate (PHRR) and total heat release (THR) of nanocomposite were decreased by 36.0% and 37.8% in comparison to pure PP. Moreover, the maximum smoke density (MSD) of nanocomposites was reduced by 53.9% compared to pure PP. Lastly, the flame retardant and smoke suppression mechanisms of ZnO nanowires were analyzed according to the morphology of the char layer and calculation of activation energy.


ZnO nanowires Hydrothermal method Flame retardant Smoke suppression Polypropylene 



This work was supported by the National Natural Science Foundation of China (Grant No. 51465036).


  1. 1.
    Wen PY, Wang D, Liu JJ, Zhan J, Hu Y, Yuen RKK (2017) Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene. Polym Adv Technol 28(6):679–685CrossRefGoogle Scholar
  2. 2.
    Zhu JQ, Lu X, Yang HY et al (2018) Vinyl polysiloxane microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene. J Polym Res 5(4):1–7Google Scholar
  3. 3.
    Feng CM, Liang MY, Jiang JL, Huang J, Liu H (2016) Synergistic effect of a novel triazine charring agent and ammonium polyphosphate on the flame retardant properties of halogen-free flame retardant polypropylene composites. Thermochim Acta 627-629:83–90CrossRefGoogle Scholar
  4. 4.
    Li XS, Zhao ZL, Wang YH et al (2017) Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem Eng J 324:237–250CrossRefGoogle Scholar
  5. 5.
    Gao S, Zhao X, Liu GS (2017) Synthesis of an integrated intumescent flame retardant and its flame retardancy properties for polypropylene. Polym Degrad Stab 138:106–114CrossRefGoogle Scholar
  6. 6.
    Huang JG, Liang MY, Feng CM, Liu H (2016) Synergistic effects of 4A zeolite on the flame-retardant properties and thermal stability of an efficient halogen-free flame-retardant EVA composite. Polym Eng Sci 56(4):380–387CrossRefGoogle Scholar
  7. 7.
    Xing WY, Wang X, Song L, Hu Y (2016) Enhanced thermal stability and flame retardancy of polystyrene by incorporating titanium dioxide nanotubes via radical adsorption effect. Compos Sci Technol 133:15–22CrossRefGoogle Scholar
  8. 8.
    Xiao D, Li Z, Gohs U, Wagenknecht U, Voit B, Wang DY (2017) Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polym Chem 8(40):6309–6318CrossRefGoogle Scholar
  9. 9.
    Nie L, Liu CH, Liu L, Jiang T, Hong J, Huang J (2015) Study of the thermal stability and flame retardant properties of graphene oxide-decorated zirconium organophosphate based on polypropylene nanocomposites. RSC Adv 5(112):92318–92327CrossRefGoogle Scholar
  10. 10.
    Zheng ZH, Zhang L, Liu Y, Wang H (2016) A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. J Polym Res 23(4):74CrossRefGoogle Scholar
  11. 11.
    Qiu L, Gao YS, Lu P, O'hare D, Wang Q (2018) Synthesis and properties of polypropylene/layered double hydroxide nanocomposites with different LDHs particle sizes. J Appl Polym Sci 135(18):46204CrossRefGoogle Scholar
  12. 12.
    Qian Y, Wei P, Zhao XM, Jiang P, Yu H (2013) Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire Mater 37(1):1–16CrossRefGoogle Scholar
  13. 13.
    Lv P, Wang ZZ, Hu Y, Yu M (2009) Study on effect of polydimethylsiloxane in intumescent flame retardant polypropylene. J Polym Res 16(2):81–89CrossRefGoogle Scholar
  14. 14.
    Kong LZ, Tu KK, Guan H, Wang X (2017) Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl Surf Sci 407:479–484CrossRefGoogle Scholar
  15. 15.
    Sheshama M, Khatri H, Suthar M, Basak S, Ali W (2017) Bulk vs. Nano ZnO: influence of fire retardant behavior on sisal fibre yarn. Carbohydr Polym 175:257–264CrossRefGoogle Scholar
  16. 16.
    Samanta AK, Bhattacharyya R, Jose S, Basu G, Chowdhury R (2017) Fire retardant finish of jute fabric with nano zinc oxide. Cellulose 24(2):1143–1157CrossRefGoogle Scholar
  17. 17.
    Yousefi M, Noori E, Ghanbari D, Salavati-Niasari M, Gholami T (2014) A facile room temperature synthesis of zinc oxide nanostructure and its influence on the flame Retardancy of poly vinyl alcohol. J Clust Sci 25(2):397–408CrossRefGoogle Scholar
  18. 18.
    Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H (2018) New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci 439:1163–1179CrossRefGoogle Scholar
  19. 19.
    Xiang Q, Pan QY, Xu JQ et al (2007) Solvothermal preparation of zinc oxide nanowires. Chinese J Inorg Chem 23(2):369–372Google Scholar
  20. 20.
    Yuan BH, Hu Y, Chen XF, Shi Y, Niu Y, Zhang Y, He S, Dai H (2017) Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos Part A-Appl S 100:106–117CrossRefGoogle Scholar
  21. 21.
    Gu JW, Guo YQ, Yang XT, Liang C, Geng W, Tang L, Li N, Zhang Q (2017) Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos Part A-Appl S 95:267–273CrossRefGoogle Scholar
  22. 22.
    Han YQ, Li TX, Gao B et al (2016) Synergistic effects of zinc oxide in montmorillonite flame-retardant polystyrene nanocomposites. J Appl Polym Sci 133(10):43047CrossRefGoogle Scholar
  23. 23.
    Chiu SH, Wu CL, Lee HT et al (2016) Synthesis and characterisation of novel flame retardant polyurethanes containing designed phosphorus units. J Polym Res 23(10):1–10CrossRefGoogle Scholar
  24. 24.
    Ma YF, Wang JF, Xu YZ et al (2015) Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J Appl Polym Sci 132(44):42730CrossRefGoogle Scholar
  25. 25.
    Xu WZ, Li CH, Hu YX et al (2016) Synthesis of MoO3 with different morphologies and their effects on flame retardancy and smoke suppression of polyurethane elastomer. Polym Adv Technol 27(7):964–972CrossRefGoogle Scholar
  26. 26.
    Yan W, Yu J, Zhang MQ, Wang T, Wen C, Qin S, Huang W (2018) Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin. J Polym Res 25(3):72CrossRefGoogle Scholar
  27. 27.
    Wang M, Zeng XF, Chen JY, Wang JX, Zhang LL, Chen JF (2017) Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties. Polym Degrad Stab 146:327–333CrossRefGoogle Scholar
  28. 28.
    Jin XD, Gu XY, Chen C et al (2017) The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. J Mater Sci 52(20):12235–12250CrossRefGoogle Scholar
  29. 29.
    Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6(24):639–642CrossRefGoogle Scholar
  30. 30.
    Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4(5):323–328CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Junhong Guo
    • 1
  • Guotian Liu
    • 1
  • Yongliang Guo
    • 1
  • Li Tian
    • 1
  • Xuemei Bao
    • 1
  • Xiujun Zhang
    • 1
  • Baoping Yang
    • 1
  • Jinfeng Cui
    • 1
    Email author
  1. 1.College of Petrochemical TechnologyLanzhou University of TechnologyLanzhouChina

Personalised recommendations