Porous PAN micro/nanofiber membranes with potential application as Lithium-ion battery separators: physical, morphological and thermal properties

  • Niloufar Sabetzadeh
  • Ali Akbar GharehaghajiEmail author
  • Mehran Javanbakht


The porous PAN micro/nanofiber membranes with an average diameter of 700–800 nm were produced in one step by electrospinning a ternary system of PAN/DMF/H2O with phase separation mechanism. Also, non-porous PAN micro/nanofiber membranes with a similar diameter were prepared. Physical, morphological, mechanical and thermal properties of the porous PAN micro/nanofiber membranes were characterized and compared with those of non-porous PAN membranes. Thermal shrinkage of the porous PAN micro/nanofiber membranes and the Celgard PP separators were examined to be 15% and 95%, respectively, after treating for 45 min at 200 °C. The porosity impacts of porous PAN micro/nanofiber membranes were explored on some of the effective properties in battery performance. The results revealed that the porous PAN micro/nanofiber membranes had a higher air permeability value than the Celgard PP separators, indicating that the porosity, interconnected pores and ionic conductivity were higher. The porous PAN micro/nanofiber membranes had an enhanced electrolyte wettability, small contact angle and large electrolyte uptake leading to be the most promising candidate for Li-ion battery (LIB) separators.


Polyacrylonitrile Porous micro/nanofiber membrane Electrospinning Lithium-ion battery (LIB) Separator 


  1. 1.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRefGoogle Scholar
  2. 2.
    Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L (2015) Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochim Acta 159:61–65CrossRefGoogle Scholar
  3. 3.
    Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H (2016) Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 9:3023–3039CrossRefGoogle Scholar
  4. 4.
    Ma X, Kolla P, Yang R, Wang Z, Smirnova ZY, AL FH (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423CrossRefGoogle Scholar
  5. 5.
    Costa CM, Rodrigues LC, Sencadas V, Silva MM, Rocha JG, Lanceros-Méndez S (2012). J Membr Sci 407:193CrossRefGoogle Scholar
  6. 6.
    Zhijiang C (2006) Study on a Novel Polymer-based Secondary Battery System. J Polym Res 13:207–211CrossRefGoogle Scholar
  7. 7.
    Cho TH, Tanaka M, Ohnishi H, Kondo Y, Yoshikazu M, Nakamura T, Sakai T (2010) Composite nonwoven separator for lithium-ion battery: Development and characterization. J Power Sources 195:4272–4277CrossRefGoogle Scholar
  8. 8.
    Kim JH, Kim JH, Choi KH, Yu HK, Kim JH, Lee JS, Lee SY (2014) Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems. Nano Lett 14:4438–4448CrossRefGoogle Scholar
  9. 9.
    Long J, Wang X, Zhang H, Hu J, Wang Y (2016). Int J Electrochem Sci 11:6552CrossRefGoogle Scholar
  10. 10.
    Kim M, Park JH (2012) Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. J Power Sources 212:22–27CrossRefGoogle Scholar
  11. 11.
    Fu D, Luan B, Argue S, Bureau M, Davidson I (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRefGoogle Scholar
  12. 12.
    Kim JY, Lee Y, Lim DY (2009) Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim Acta 54:3714–3719CrossRefGoogle Scholar
  13. 13.
    Huang F, Liu W, Li P, Ning J, Wei Q (2016) Electrochemical properties of llto/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials 9:75CrossRefGoogle Scholar
  14. 14.
    Li J, Tian W, Yan H, He L, Tuo X (2016). J Appl Polym Sci:133Google Scholar
  15. 15.
    Tanaka M, Cho TH, Nakamura T, Tarao T, Kawabe M, Sakai T (2010) Electrochemical performances of polyacrylonitrile nano-fiber based nonwoven separator for lithium ion battery. Electrochemistry 78:982–987CrossRefGoogle Scholar
  16. 16.
    Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134CrossRefGoogle Scholar
  17. 17.
    Jeong HS, Lee SY (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Sources 196:6716–6722CrossRefGoogle Scholar
  18. 18.
    Jeong HS, Hong SC, Lee SY (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364:177–182CrossRefGoogle Scholar
  19. 19.
    Burger C, Hsiao BS, Chu B (2006) NANOFIBROUS MATERIALS AND THEIR APPLICATIONS. Annu Rev Mater Res 36:333–368CrossRefGoogle Scholar
  20. 20.
    Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326CrossRefGoogle Scholar
  21. 21.
    Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5:2349–2370CrossRefGoogle Scholar
  22. 22.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  23. 23.
    Lin J, Wang X, Ding B, Yu J, Sun G, Wang M (2012). Crit Rev Solid State Mater Sci 94(37)Google Scholar
  24. 24.
    Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007). Electrochem Solid-State Lett 10:159CrossRefGoogle Scholar
  25. 25.
    Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662CrossRefGoogle Scholar
  26. 26.
    Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16CrossRefGoogle Scholar
  27. 27.
    Yi W, Huaiyu Z, Jian H, Yun L, Shushu Z (2009) Wet-laid non-woven fabric for separator of lithium-ion battery. J Power Sources 189:616–619CrossRefGoogle Scholar
  28. 28.
    Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51:239–264CrossRefGoogle Scholar
  29. 29.
    Zhang F, Ma X, Cao C, Li J, Zhu Y (2014) Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J Power Sources 251:423–431CrossRefGoogle Scholar
  30. 30.
    Kim CH, Jung YH, Kim HY, Lee DR, Dharmaraj N, Choi KE (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14:59–65CrossRefGoogle Scholar
  31. 31.
    Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20:158CrossRefGoogle Scholar
  32. 32.
    Lubasova D, Martinova L (2011) J Nanomater.
  33. 33.
    Costa CM, Pereira JN, Rodrigues LC, Silva MM, Ribelles JLG, Mendez SL (2013) Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochim Acta 88:473–476CrossRefGoogle Scholar
  34. 34.
    Mohan VM, Qiu W, Shen J, Chen W (2010) Electrical properties of poly(vinyl alcohol) (PVA) based on LiFePO4 complex polymer electrolyte films. J Polym Res 17:143–150CrossRefGoogle Scholar
  35. 35.
    Kim YJ, Kim HS, Doh CH, Kim SH, Lee SM (2013) Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. J Power Sources 244:196–206CrossRefGoogle Scholar
  36. 36.
    Cho TH, Tanaka M, Onishi H, Kondo Y, Nakamura, Yamazaki H, Tanase S, Sakai T (2008). J Power Sources 181:155–160CrossRefGoogle Scholar
  37. 37.
    Yu X, Xiang H, Long Y, Zhao N, Zhang X, Xu J (2010) Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Mater Lett 64:2407–2409CrossRefGoogle Scholar
  38. 38.
    Tan L, Pan D, Pan N (2008) Thermodynamic study of a water-dimethylformamide-polyacrylonitrile ternary system. J Appl Polym Sci 110:3439–3447CrossRefGoogle Scholar
  39. 39.
    Jeong HS, Choi ES, Lee SY (2012) Composition ratio-dependent structural evolution of SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separators for lithium-ion batteries. Electrochim Acta 86:317–322CrossRefGoogle Scholar
  40. 40.
    Liu F, Guo R, Shen M, Wang S, Shi Z (2009) Effect of processing variables on the morphology of electrospun poly[(lactic acid)-co-(glycolic acid)] nanofibers. Macromol Mater Eng 294:666–672CrossRefGoogle Scholar
  41. 41.
    Yang Y, Simeon F, Hatton TA, Rutledge GC (2012) Polyacrylonitrile-based electrospun carbon paper for electrode applications. J Appl Polym Sci 124:3861–3870CrossRefGoogle Scholar
  42. 42.
    Sabetzadeh N, Gharehaghaji AA, Javanbakht M (2018) Porous PAN micro/nanofiber separators for enhanced lithium-ion battery performance. Solid State Ionics 325:251–257CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Niloufar Sabetzadeh
    • 1
    • 2
  • Ali Akbar Gharehaghaji
    • 1
    • 2
    Email author
  • Mehran Javanbakht
    • 3
    • 4
  1. 1.Group of Nanotechnology EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Department of ChemistryAmirkabir University of TechnologyTehranIran
  4. 4.Renewable Energy Research CenterAmirkabir University of TechnologyTehranIran

Personalised recommendations