Advertisement

Fabrication and electrical characterization of (Bi0.49Na0.49Ba0.02)TiO3-PVDF thin film composites

  • Sugato HajraEmail author
  • Sushrisangita Sahoo
  • R. N. P. Choudhary
ORIGINAL PAPER
  • 88 Downloads

Abstract

The barium doped bismuth sodium titanate (i.e., Bi0.49Na0.490.98Ba0.02)TiO3 (BNBT) powder was prepared by a conventional ceramic processing route. The thin film composites of BNBT- PVDF (polyvinylidene fluoride) were fabricated via a solution casting route. The scanning electron micrographs of the thin film samples show the homogenous distribution of grains with absence of cracks/pores. It is observed that with the increase of BNBT content in PVDF leads to enhancement in the dielectric permittivity and the reduction in the dissipation factor (tangent loss). The various electrical properties of the thin film samples were studied in the frequency range of 1 kHz to 1 MHz at different temperature between 25 and 100 °C. The prepared composite films have been used to study the (a) relationship between properties and crystal structure and (b) relaxation and conduction mechanism through the complex modulus and impedance spectroscopy. The contribution of grains was analyzed in the composite films by the fitting of equivalent circuit with the experimental data. An existence of the non-Debye type of dielectric relaxation was indicated by studying of the impedance and modulus parameters. The calculated activation energy from the temperature dependence of AC conductivity depicts hopping nature of charge carriers, which further explain the conduction process and mechanism in the prepared composites.

Keywords

Ceramic-polymer composites Dielectric Impedance spectroscopy 

Notes

Acknowledgements

The authors like to express their sincere gratitude to Dr. Kalyani Mohanta, Indian Institute of Technology, BHU, Varanasi for her kind help in carrying out SEM investigation.

References

  1. 1.
    Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRefGoogle Scholar
  2. 2.
    Lovinger AJ (1983) Ferroelectric Polymers. Science 220:1115–1121CrossRefGoogle Scholar
  3. 3.
    Pan J, Li K, Li J, Hsu T, Wang Q (2009). Appl Phys Lett 95Google Scholar
  4. 4.
    Saravanakumar B, Mohan R, Thiyagarajan K, Kim SJ (2013) Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv 3:16646–16656CrossRefGoogle Scholar
  5. 5.
    Hong CC, Huang SY, Shieh J, Chen SH (2012) Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss. Macromolecules 45:1580–1586CrossRefGoogle Scholar
  6. 6.
    Seymour RB, Kauffman GB (1990). J Chem Educ 67, 763Google Scholar
  7. 7.
    Seol ML, Woo J-H, Lee D-I, Im H, Hur J, Choi YK (2014). Small 10:103887–103894CrossRefGoogle Scholar
  8. 8.
    da Costa GCC, Simoes AZ, Ries A, Foschini CR, Zaghete MA, Varela JA (2004). Mater Lett 21, 414Google Scholar
  9. 9.
    Nan CW, Weng GJ (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88:416–423CrossRefGoogle Scholar
  10. 10.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 313:334–336CrossRefGoogle Scholar
  11. 11.
    Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M (2008) Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films. J Eur Ceram Soc 28:117–122CrossRefGoogle Scholar
  12. 12.
    Song Y, Shen Y, Hu P, Lin Y, Li M, Nan CW (2012) Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3nanofibers. Appl Phys Lett 101:152904CrossRefGoogle Scholar
  13. 13.
    Thomas P, Satapathy S, Dwarakanath K, Varma KBR (2010) Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett 4:632–643CrossRefGoogle Scholar
  14. 14.
    Luo B, Wang X, Wang Y, Li L (2014) Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J Mater Chem A 2:510–519CrossRefGoogle Scholar
  15. 15.
    Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41:8008–8013CrossRefGoogle Scholar
  16. 16.
    Deepa KS, Shaiju P, Sebastian MT, Bhoje Gowd E, James J (2014). PhysChemChemPhys 16:17008–17017Google Scholar
  17. 17.
    Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA (2010) Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Physica B 405:94–98CrossRefGoogle Scholar
  18. 18.
    Hajra S, Sahoo S, De M, Rout PK, Tewari HS, Choudhary RNP (2018). J Mater Sci Mater Electron 29:1463CrossRefGoogle Scholar
  19. 19.
    Sailaja JM, Murali N, KV Babu VV (2017) Journal of Asian ceramic. society 5:18–30Google Scholar
  20. 20.
    Dash S, Choudhary RNP, Goswami MN (2017) Enhanced dielectric and ferroelectric properties of PVDF-BiFeO 3 composites in 0–3 connectivity. J Alloys Compd 715:29–36CrossRefGoogle Scholar
  21. 21.
    Yu K, Wang H, Zhou Y, Bai Y, Niu Y (2013). J Appl Phys 113Google Scholar
  22. 22.
    Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett 2:294–301CrossRefGoogle Scholar
  23. 23.
    Parida BN, Das PR, Padhee R, Choudhary RNP (2012) Phase transition and conduction mechanism of rare earth based tungsten-bronze compounds. J Alloy Compd 540:267–274CrossRefGoogle Scholar
  24. 24.
    Koop CG (1951) On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys Rev 83:121–124CrossRefGoogle Scholar
  25. 25.
    Gupta P, Padhee R, Mahapatra PK, Choudhary RNP (2017). J Mater Sci Mater Electron 28:17344–17353CrossRefGoogle Scholar
  26. 26.
    Wang T, Hu J, Yang H, Jin L, Wei X, Li C, Yan F, Lin Y (2017). J Appl Phys 121Google Scholar
  27. 27.
    Barick BK, Choudhary RNP, Pradhan DK (2013) Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram Int 39:5695–5704CrossRefGoogle Scholar
  28. 28.
    Dash U, Sahoo S, Chaudhuri P, Parashar SKS, Parashar K (2014). J Adv Ceram 3:89–97CrossRefGoogle Scholar
  29. 29.
    Parida K, Dehury SK, Choudhary RNP (2017) Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater Sci Eng B 225:173–181CrossRefGoogle Scholar
  30. 30.
    Richert R, Wagner H (1998) The dielectric modulus: relaxation versus retardation. Solid State Ionics 105:167–173CrossRefGoogle Scholar
  31. 31.
    Macdonald JR (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13:147–149CrossRefGoogle Scholar
  32. 32.
    Parida BN, Padhee R, Suara D, Mishra A, Choudhary RNP (2016). J Mater Sci Mater Electron 27:9015–9021CrossRefGoogle Scholar
  33. 33.
    N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, .J. Mater. Sci: Mater Electron, 26 (2015) 3797–3804Google Scholar
  34. 34.
    Purohit V, Padhee R, Choudhary RNP (2018) Dielectric and impedance spectroscopy of Bi(Ca 0.5 Ti 0.5 )O 3 ceramic. Ceram Int 44:3993–3999CrossRefGoogle Scholar
  35. 35.
    Kröger FA, Vink HJ (1956). Solid State Phys 3:307–435CrossRefGoogle Scholar
  36. 36.
    Behera B, Nayak P, Choudhary RNP (2008) Structural and impedance properties of KBa2V5O15 ceramics. Mater Res Bull 43:401–410CrossRefGoogle Scholar
  37. 37.
    De M, Hajra S, Tiwari R, Sahoo S, Choudhary RNP, Tewari HS (2018) Structural, dielectric and electrical characteristics of BiFeO 3 -NaNbO 3 solid solutions. Ceram Int 44:11792–11797CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2018

Authors and Affiliations

  1. 1.Department of Electronics and InstrumentationSiksha O Anusandhan (deemed to be university)BhubaneswarIndia
  2. 2.Multifunctional and Advance Materials LaboratorySiksha O Anusandhan (deemed to be university)BhubaneswarIndia

Personalised recommendations