Adhesive, self-healing and antibacterial properties of Cu-coordinated soft gel based on histamine-conjugated polyaspartamide

  • Jong Ryoul Moon
  • Young Sil Jeon
  • Young Jun Kim
  • Ji-Heung KimEmail author


Metal-ligand coordination bonding is a non-covalent interaction that has been extensively studied as an effective way to improve the mechanical properties of hydrogels or to generate novel supramolecular self-healing gels. In this study, biodegradable polyaspartamide derivatives conjugated with histamine were synthesized and used to prepare the metal-coordinated supramolecular gel with several different metal-ions such as Cu(II), Ni(II), and Zn(II) in an aqueous solution. The resulting gels showed high adhesive properties on glass and plastics substrates, and the adhesive strength could be modulated by using different metal-ion species as well as the concentration and medium pH. In particular, the Cu(II)-coordinated gel exhibited a reversible self-healing behavior and good antibacterial activity. These wholly bio-based supramolecular polymer gels have potential for various biomedical applications with their multifunctional properties comprising adhesive, self-healing and antimicrobial properties in wet gel state.


Metal-coordination Supramolecular hydrogel Adhesive Self-healing Antibacterial Poly(amino acid) 



This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1A09918727).


  1. 1.
    Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047CrossRefGoogle Scholar
  2. 2.
    Jen AC, Wake CM, Mikos AG (1996) Hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364CrossRefGoogle Scholar
  3. 3.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002–8018CrossRefGoogle Scholar
  4. 4.
    Seo JH, Lee JS, Kim JH (2015) Swelling characteristics and Pb(II) ion adsorption properties of superabsorbent gel based on dopamine-conjugated poly(aspartic acid). Polym-Korea 39:917–924Google Scholar
  5. 5.
    Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980CrossRefGoogle Scholar
  6. 6.
    Montarnal D, Cordier P, Soulié-Ziakovic C, Tournilhac F, Leibler L (2008) Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J Polym Sci Polym Chem 46:7925–7936CrossRefGoogle Scholar
  7. 7.
    Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH, Paulus RM, Stumpf S, Sandmann B, Vitz A, Winter A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2013) Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym Chem 4:4966–4973CrossRefGoogle Scholar
  8. 8.
    Burattini S, Greenland BW, Merino DH, Weng W, Seppaia J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058CrossRefGoogle Scholar
  9. 9.
    Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A (2013) Preorganized hydrogel: self healing properties of supramolecular hydrogels formed by polymerization of host–guest monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 25:2849–2853CrossRefGoogle Scholar
  10. 10.
    Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4:4910–4926CrossRefGoogle Scholar
  11. 11.
    Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297–301CrossRefGoogle Scholar
  12. 12.
    Piepenbrock MOM, Clarke N, Steed JW (2009) Metal ion and anion-based “tuning” of a supramolecular metallogel. Langmuir 25:8451–8456CrossRefGoogle Scholar
  13. 13.
    Li X, Zhang H, Zhang P, Yu Y (2018) A Sunlight-Degradable Autonomous Self-Healing Supramolecular Elastomer for Flexible Electronic Devices. Chem Mater 30:3752–3758CrossRefGoogle Scholar
  14. 14.
    Wang Y, Huang F, Chen X, Wang XW, Zhang WB, Peng J, Li J, Zhai M (2018) Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion. Chem Mater 30:4289–4297CrossRefGoogle Scholar
  15. 15.
    Tran NB, Moon JR, Jeon YS, Kim J, Kim JH (2017) Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid Polym Sci 295:655–664CrossRefGoogle Scholar
  16. 16.
    Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G (2012) Amphiphilic polyaspartamide copolymer-based micelles for rivastigmine delivery to neuronal cells. Drug Deliv 19:307–316CrossRefGoogle Scholar
  17. 17.
    Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH (2013) Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets. ACS Appl Mater Interface 5:433–443CrossRefGoogle Scholar
  18. 18.
    Moon JR, Kim JH (2010) Biodegradable stimuli-responsive hydrogels based on amphiphilic polyaspartamides with tertiary amine pendent groups. Polym Int 59:630–636Google Scholar
  19. 19.
    Moon JR, Kim MW, Kim D, Jeong JH, Kim JH (2011) Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 286:63–71CrossRefGoogle Scholar
  20. 20.
    Moon JR, Jeon YS, Zrinyi M, Kim JH (2013) pH-Responsive PEGylated nanoparticles based on amphiphilic polyaspartamide: preparation, physicochemical characterization and in vitro evaluation. Polym Int 62:1218–1224CrossRefGoogle Scholar
  21. 21.
    Huynh NT, Jeon YS, Kim D, Kim JH (2013) Preparation and swelling properties of “click” hydrogel from polyaspartamide derivatives using tri-arm PEG and PEG-co-poly(amino urethane) azides as crosslinking agents. Polymer 54:1341–1349CrossRefGoogle Scholar
  22. 22.
    Giammona G, Pitarresi G, Cavallaro G, Carlisi B, Craparo EF, Mandracchia D (2006) pH-sensitive hydrogel based on a polyaspartamide derivative. J Drug Del Sci Tech 16:77–84CrossRefGoogle Scholar
  23. 23.
    Pitarresi G, Pierro P, Palumbo FS, Tripodo G, Giammona G (2006) Photo-cross-linked hydrogels with polysaccharide−poly(amino acid) structure: new biomaterials for pharmaceutical applications. Biomacromolecules 7:1302–1310CrossRefGoogle Scholar
  24. 24.
    Feldner T, Haring M, Saha S, Esquena J, Banerjee R, Diaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217CrossRefGoogle Scholar
  25. 25.
    Rivas BL, Maturana HA, Molina MH, Gomez-Anton MR, Pierola IF (1998) Metal ion binding properties of poly(N-vinylimidazole) hydrogels. J Appl Polym Sci 67:1109–1118CrossRefGoogle Scholar
  26. 26.
    Pekel N, Guven O (1999) Investigation of complex formation between poly(N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid Polym Sci 277:570–573CrossRefGoogle Scholar
  27. 27.
    Pestov AV, Privar YO, Ustinov AY, Voit AV, Azarova YA, Mekhaev AV, Bratskaya SY (2016) Effect of polymer backbone chemical structure on metal ions binding by imidazolylmethyl derivatives. Chem Eng J 283:323–329CrossRefGoogle Scholar
  28. 28.
    Yi X, He J, Wang X, Zhang Y, Tan G, Zhou Z, Chen J, Chen D, Wang R, Tian W, Yu P, Zhou L, Ning C (2018) Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking. ACS Appl Mater Interface 10:6190–6198CrossRefGoogle Scholar
  29. 29.
    Lazaro-Martinez JM, Monti GA, Chattaj AK (2013) Insight into the coordination sphere of copper ion in polymers containing carboxylic acid and azole groups. Polymer 54:5214–5221CrossRefGoogle Scholar
  30. 30.
    Trojer MA, Movahedi A, Blanck H, Nyden M (2013) Imidazole and triazole coordination chemistry for antifouling coating. J Chem 2018: ID 946739:23Google Scholar
  31. 31.
    Kara A, Uzun L, Besirli N, Denizli A (2017) Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J Hazard Mater 106:93–99CrossRefGoogle Scholar
  32. 32.
    Klingkajon W, Supaphol P (2014) Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 99: 045008:11Google Scholar
  33. 33.
    Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol biotechnol 98:1001–1009CrossRefGoogle Scholar
  34. 34.
    Villanueva ME, Diez AMR, Gonzalez JA, Perez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8:16280–16288CrossRefGoogle Scholar
  35. 35.
    Nakato T, Kusuno A, Kakuchi T (2000) Synthesis of poly(succinimide) by bulk polycondensation of L-aspartic acid with an acid catalyst. Polym Chem 38:117–122CrossRefGoogle Scholar
  36. 36.
    Tomida M, Nakato T, Kuramochi M (1996) Novel method of synthesizing poly(succinimide) and its copolymeric derivatives by acid-catalysed polycondensation of L-aspartic acid. Polymer 37:4435–4437CrossRefGoogle Scholar
  37. 37.
    Vlasak J, Rypacek F, Drobnik J, Saudek V (1979) Properties and reactivity of polysuccinimide. J Polym Sci 66:59–64Google Scholar
  38. 38.
    Tran NB, Kim JY, Kim YC, Kim YJ, Kim JH (2015) CO2-responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel. J Appl Polym Sci 133:43305Google Scholar
  39. 39.
    Tella AC, Obaleye JA (2010) Metal complexes as antibacterial agents: Synthesis, characterization and antibacterial activity of some 3d metal complexes of sulphadimidine. Orbital Elec J Chem 2:11–26Google Scholar
  40. 40.
    Appleton TG, Pesch FJ, Wienken M, Menzer S, Lippert B (1992) Linkage isomerism in square-planar complexes of platinum and palladium with histidine and derivatives. Inorg Chem 31:4410–4419CrossRefGoogle Scholar
  41. 41.
    Tsiveriotis P, Hadjiliadis N (1999) Studies on the interaction of histidyl containing peptides with palladium(II) and platinum(II) complex ions. Coord Chem Rev 190–192:171–184CrossRefGoogle Scholar
  42. 42.
    Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 12:8889–8898CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations