Advertisement

Journal of Polymer Research

, 26:23 | Cite as

Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation

  • Abhishek K. Pathak
  • Hema Garg
  • Mandeep Singh
  • T. Yokozeki
  • Sanjay R. DhakateEmail author
ORIGINAL PAPER
  • 57 Downloads

Abstracts

In this study influence of the graphene oxide (GO) inclusion on the thermal properties of carbon fiber reinforced polymer (CFRP) hybrid composite is reported. Different wt% content of GO used for development of epoxy matrix and CFRP hybrid composite was prepared using compression moulding process. The nanocomposites were characterized by various techniques viz. DMA, DSC, TMA, and TGA. It is observed that in GO-epoxy resin composites, storage and loss modulus reached maximum for 0.3 wt% of GO. The storage modulus of CFRP hybrid composite is achieved almost double with the addition of 0.3 wt% of GO. The glass transition temperature (Tg) calculated from DMA and TMA of GO incorporated CFRP hybrid composites demonstrated the enhancement in Tg by 4 °C and 12 °C respectively over to CFRP composites at 0.3 wt% GO. This improvement at GO loading is because of constraint effect of GO sheets on the polymer chain mobility in the composite.

Graphical abstract

Figure: Proposed mechanism of GO influences on the CF-epoxy composite.

Keywords

Carbon fiber Compression moulding CFRP Glass transition temperature Thermo-mechanical Interfacial properties 

Notes

Acknowledgements

Authors are highly grateful to Director, CSIR-NPL, and Head, Advanced Materials and Devices Division, for his kind permission to publish the results. Authors are like to thanks, R. K. Seth, for providing TGA, DSC and TMA and Jai Tawale for providing in SEM characterization composites. One of the authors, Abhishek K. Pathak, would like to thanks, University grant Commission JRF fellowship. Authors also thank DST, for India-Japan International collaborative project funding.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jang K, Cho W-J, Ha C-S (1999) Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites. Compos Sci Technol 59:995–1001CrossRefGoogle Scholar
  2. 2.
    An F, Lu C, Li Y et al (2012) Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater Des 33:197–202CrossRefGoogle Scholar
  3. 3.
    Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Tanimoto T, Friedrich K (2007) On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos A: Appl Sci Manuf 38:1159–1162CrossRefGoogle Scholar
  4. 4.
    Davies P, Kausch H, Williams J et al (1992) Round-robin interlaminar fracture testing of carbon-fibre-reinforced epoxy and PEEK composites. Compos Sci Technol 43:129–136CrossRefGoogle Scholar
  5. 5.
    Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38CrossRefGoogle Scholar
  6. 6.
    Degrieck J, Van Paepegem W (2001) Fatigue damage modeling of fibre-reinforced composite materials: Review. Appl Mech Rev 54:279CrossRefGoogle Scholar
  7. 7.
    Chand S (2000). J Mater Sci 35:1303–1313CrossRefGoogle Scholar
  8. 8.
    Choi N, Kinloch A, Williams J (1999) Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, Mode II and Mixed-Mode I/II loading. J Compos Mater 33:73–100CrossRefGoogle Scholar
  9. 9.
    Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59:481–487CrossRefGoogle Scholar
  10. 10.
    Jiang Z, Zhang H, Zhang Z, Murayama H, Okamoto K (2008) Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos A: Appl Sci Manuf 39:1762–1767CrossRefGoogle Scholar
  11. 11.
    T Ogasawara, Y Ishida, T Kasai (2009) Compos Sci Technol 69: 2002Google Scholar
  12. 12.
    Xu Y, Van Hoa S (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861CrossRefGoogle Scholar
  13. 13.
    Siddiqui NA, Woo RS, Kim J-K, Leung CC, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos A: Appl Sci Manuf 38:449–460CrossRefGoogle Scholar
  14. 14.
    Aldajah S, Haik Y (2012) Transverse strength enhancement of carbon fiber reinforced polymer composites by means of magnetically aligned carbon nanotubes. Mater Des 34:379–383CrossRefGoogle Scholar
  15. 15.
    Hsiao K-T, Alms J, Advani SG (2003) Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14:791–793CrossRefGoogle Scholar
  16. 16.
    Bekyarova E, ET Thostenson AY et al (2007) Functionalized single-walled carbon nanotubes for carbon fiber−epoxy composites†. J Phys Chem C 111:17865–17871CrossRefGoogle Scholar
  17. 17.
    Sharma S, Singh BP, Babal AS, Teotia S, Jyoti J, Dhakate S (2017) Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process. J Mater Sci 52:7503–7515CrossRefGoogle Scholar
  18. 18.
    MJ Allen, VC Tung, RB Kaner (2009) Chem Rev 110: 132Google Scholar
  19. 19.
    Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  20. 20.
    M Borah, AK Pathak, DK Singh, P Pal, SR Dhakate (2017) Nanotechnology 28: 075602Google Scholar
  21. 21.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  22. 22.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  23. 23.
    Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  25. 25.
    Marcano DC, Kosynkin DV, Berlin JM, et al. (2010)Google Scholar
  26. 26.
    T Livneh, TL Haslett, M Moskovits (2002) Physical Review B 66: 195110Google Scholar
  27. 27.
    Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007). Phys Chem Chem Phys 9:1276CrossRefGoogle Scholar
  28. 28.
    Tuinstra F, Koenig JL (1970). J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  29. 29.
    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited‖. J Phys Chem B 102:4477–4482CrossRefGoogle Scholar
  30. 30.
    Jeong H-K, Lee YP, Lahaye RJ et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366CrossRefGoogle Scholar
  31. 31.
    Davoodi AH, Mazinani S, Sharif F, Ranaei-Siadat SO (2018) GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. J Polym Res 25:204CrossRefGoogle Scholar
  32. 32.
    G Wang, X Sun, C Liu, J Lian (2011) Appl Phys Lett 99: 053114Google Scholar
  33. 33.
    Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res 25:65CrossRefGoogle Scholar
  34. 34.
    AK Pathak, V Kumar, S Sharma, T Yokozeki, S Dhakate (2018) J. Colloid Interface SciGoogle Scholar
  35. 35.
    Babal AS, Gupta R, Singh BP, Dhakate SR (2015) Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization. RSC Adv 5:43462–43472CrossRefGoogle Scholar
  36. 36.
    Jyoti J, Singh BP, Arya AK, Dhakate S (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006CrossRefGoogle Scholar
  37. 37.
    Chouhan DK, Kumar A, Rath SK, Kumar S, Alegaonkar PS, Harikrishnan G, Umasankar Patro T (2018) Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy. J Polym Res 25:60CrossRefGoogle Scholar
  38. 38.
    Faulstich de Paiva JM, Frollini E (2006) Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng 291:405–417CrossRefGoogle Scholar
  39. 39.
    George K, Komalan C, Kumar P, Varughese K, Thomas S (2007)Google Scholar
  40. 40.
    LA Pothan, Z Oommen, S Thomas (2003) Compos Sci Technol 63: 283Google Scholar
  41. 41.
    Wan Y-J, Tang L-C, Gong L-X, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRefGoogle Scholar
  42. 42.
    Tang L-C, Wan Y-J, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRefGoogle Scholar
  43. 43.
    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer 51:1614–1620CrossRefGoogle Scholar
  44. 44.
    Schick C, Lexa, D, Leibowitz L (2012) Characterization of materialsGoogle Scholar
  45. 45.
    Riga A, Collins R (2000) Encyclopedia of Analytical ChemistryGoogle Scholar
  46. 46.
    Cassettari M, Papucci F, Salvetti G, Tombari E, Veronesi S, Johari G (1993) Simultaneous measurements of enthalpy and heat capacity of a thermosetting polymer during the curing process. Rev Sci Instrum 64:1076–1080CrossRefGoogle Scholar
  47. 47.
    Zo HJ, Joo SH, Kim T, Seo PS, Kim JH, Park JS (2014) Enhanced mechanical and thermal properties of carbon fiber composites with polyamide and thermoplastic polyurethane blends. Fibers and Polymers 15:1071–1077CrossRefGoogle Scholar
  48. 48.
    Lei L, Shan J, Hu J, Liu X, Zhao J, Tong Z (2016) Co-curing effect of imidazole grafting graphene oxide synthesized by one-pot method to reinforce epoxy nanocomposites. Compos Sci Technol 128:161–168CrossRefGoogle Scholar
  49. 49.
    Corcione CE, Frigione M (2012) Characterization of nanocomposites by thermal analysis. Materials 5:2960–2980CrossRefGoogle Scholar
  50. 50.
    Wang CC, Zhao YY, Ge HY, Qian RS (2016) Polym ComposGoogle Scholar
  51. 51.
    Hobbiebrunken T, Fiedler B, Hojo M, Ochiai S, Schulte K (2005) Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses. Compos Sci Technol 65:1626–1635CrossRefGoogle Scholar
  52. 52.
    Tezvergil A, Lassila LV, Vallittu PK (2003) The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent Mater 19:471–477CrossRefGoogle Scholar
  53. 53.
    KF Babu, WM Choi (2016) Compos Sci Technol 122: 82Google Scholar
  54. 54.
    B Qi, S Lu, X Xiao, L Pan, F Tan, J Yu (2014) Express Polym Lett 8Google Scholar
  55. 55.
    Li F, Qu C-B, Hua Y, Xiao H-M, Fu S-Y (2017) Largely improved dimensional stability of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating at a low content. Carbon 119:339–349CrossRefGoogle Scholar
  56. 56.
    Johnson RR, Kural MH, Mackey GB (1981) DTIC Document,Google Scholar
  57. 57.
    Bandeira CF, Montoro SR, Espindola EL, Botelho EC, Costa ML, Cioffi MOH (2015) Applied Mechanics and MaterialsTrans Tech Publ,Google Scholar
  58. 58.
    B Yuan, C Bao, L Song, N Hong, KM Liew, Y Hu (2014) Chem Eng J 237: 411Google Scholar
  59. 59.
    J Tang, H Zhou, Y Liang, X Shi, X Yang, J Zhang (2014) J Nanomater 2014: 175Google Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  • Abhishek K. Pathak
    • 1
    • 2
  • Hema Garg
    • 3
  • Mandeep Singh
    • 1
    • 2
  • T. Yokozeki
    • 4
  • Sanjay R. Dhakate
    • 1
    • 2
    Email author
  1. 1.Advanced Carbon Products and Metrology Section, Advanced Materials and Device Metrology DivisionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific Innovation and Research (AcSIR), NPLNew DelhiIndia
  3. 3.Indian Institute of TechnologyDelhiIndia
  4. 4.Department of Aeronautics and Astronautics, Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations