Synthesis and characterization of thianthrene-containing preimidized soluble polyimide resins and the derived films with high refractive indices and good optical transparency

  • Yan Zhang
  • Jingang LiuEmail author
  • Xiao Wu
  • Hongsheng Bi
  • Ganglan Jiang
  • Xin-xin Zhi
  • Lin Qi
  • Xiumin ZhangEmail author


A series of organo-soluble polyimide (PI) resins were prepared from a newly designed and synthesized aromatic thianthrene-containing diamine, 2,7-bis(3-aminophenoxy)thianthrene (APOT) and various aromatic dianhydrides via a one-step high temperature polycondensation procedure with N-methyl-2-pyrrolidone (NMP) as the solvent. The derived PI resins were soluble in polar aprotic solvents, including NMP and N,N- dimethylacetamide (DMAc). For comparison, several unsoluble sulfur-containing PIs were prepared from anotherpara-substituted thianthrene-containing diamine, 2,7-bis(4-aminophenylenesulfanyl)thianthrene (APTT) and aromatic dianhydrides by a two-step polycondensation procedure via poly(amic acid) (PAA) precursors at elevated temperatures as high as 300 °C. Flexible and tough PI films with the tensile strength higher than 88 MPa were successfully cast from the APOT-PI resin solution at a relatively low curing temperature of 250 °C. The meta-substituted molecular skeleton in the APOT- PIs endowed the films good optical transparency with the transmittance higher than 83% at a thickness around 10 um, which was apparently higher than those of the para-substituted APTT-PI analogues. The sulfur-rich thianthrene moiety with high molar refraction endowed the APOT-PI films high refractive indices up to 1.7147 at 632.8 nm and low birefringence in the range of 0.0064–0.0133. In addition, the PI films showed good thermal stability with the glass transition temperatures (Tg) higher than 198.3 °C and 5% weight loss temperatures higher than 510 °C in nitrogen.


Polyimide Thianthrene High refractive index Optical properties Thermal properties 



Financial support from the Fundamental Research Funds of China University of Geosciences (No. 2652017345) is gratefully acknowledged.


  1. 1.
    Liu JG, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19:8907–8919CrossRefGoogle Scholar
  2. 2.
    Tojo Y, Arakwa Y, Watanabe J, Konishi G (2013) Synthesis of high refractive index and low-birefringence acrylate polymers with a tetraphenylethane skeleton in the side chain. Polym Chem 4:3807–3812CrossRefGoogle Scholar
  3. 3.
    Kiani H, Nasef MM, Javadi A, Abouzari-Lotf E, Nemati F (2013) Highly refractive, transparent, and solution processable polyamides based on a noncoplanar ortho-substituted sulfonyl-bridged diacid monomer containing chlorine side groups. J Polym Res 20:247CrossRefGoogle Scholar
  4. 4.
    Ogura T, Higashihara T, Ueda M (2010) Development of photosensitive Poly(hydroxyimide) with high refractive index. J Photopolym Sci Technol 23:515–520CrossRefGoogle Scholar
  5. 5.
    Ho WF, Uddin MA, Chan HP (2009) The stability of high refractive index polymer materials for high-density planar optical circuits. PolymDegrad Stab 94:158–161CrossRefGoogle Scholar
  6. 6.
    Blakey I, Conley W, George GA, Hill DJT, Liu HP, Rasoul F, Whittaker AK (2006). Proc SPIE 6153:61530HCrossRefGoogle Scholar
  7. 7.
    Liu Y, Lin ZY, Zhao XY, Tuan CC, Moon KS, Yoo S, Jang MG, Wong CP (2014). IEEE Trans Compon Packag Manuf Technol 7:1125–1134CrossRefGoogle Scholar
  8. 8.
    Li DD, Li S, Zhang S, Liu XW, Wong CP (2014) Thermo and dynamic mechanical properties of the high refractive index silicone resin for light emitting diode packaging. IEEE Trans Compon Packag Manuf Technol 4:190–197CrossRefGoogle Scholar
  9. 9.
    Higashihara T, Ueda M (2015) Recent progress in high refractive index polymers. Macromolecules 48:1915–1929CrossRefGoogle Scholar
  10. 10.
    Cai B, Sugihara O, Elim HI, Adschiri T, Kaino T (2011) A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites. Appl Phys Express 4:092601CrossRefGoogle Scholar
  11. 11.
    Macdonald EK, Shaver MP (2014). Polym Int 64:6–14CrossRefGoogle Scholar
  12. 12.
    Maheswara M, Oh SH, Ju JJ, Park SK, Do JY (2010) High refractive index of transparent acrylate polymers functionalized with alkyl sulfur groups. Polym J 42:249–255CrossRefGoogle Scholar
  13. 13.
    Lu CL, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901CrossRefGoogle Scholar
  14. 14.
    Minami Y, Murata K, Watase S, Matsumoto A, Ogura T, Matsukawa K (2013) Optical properties of photo-cured polyacrylate thin films containing bis-phenylfluorene modified zirconia nanoparticles. J Photopolym Sci Technol 26:491–494CrossRefGoogle Scholar
  15. 15.
    Chau JLH, Lin YM, Li AK, Su WF, Chang KS, Hsu SLC, Li TL (2007) Transparent high refractive index nanocomposite thin films. Mater Lett 61:2908–2910CrossRefGoogle Scholar
  16. 16.
    Tao P, Li Y, Rungta A, Viswanath A, Gao JN, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–28629CrossRefGoogle Scholar
  17. 17.
    Tsai CL, Liou GS (2015) Highly transparent and flexible polyimide/ZrO2nanocomposite optical films with a tunable refractive index and Abbe number. Chem Commun 51:13523–13526CrossRefGoogle Scholar
  18. 18.
    Ullah MH, Kim JH, Ha CS (2008) Highly transparent o-PDA functionalized ZnS-polymer nanocomposite thin films with high refractive index. Mater Lett 62:2249–2252CrossRefGoogle Scholar
  19. 19.
    Tsai CM, Hsu SH, Ho CC, Tu YC, Tsai HC, Wang CA, Su WF (2014) High refractive index transparent nanocomposites prepared by in situ polymerization. J Mater Chem, C 2:2251–2258CrossRefGoogle Scholar
  20. 20.
    Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465CrossRefGoogle Scholar
  21. 21.
    Matsuura T, Ando S, Sasaki S, Yamamoto F (1994) Polyimides derived from 2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl. 4. optical properties of fluorinated polyimides for optoelectronic components. Macromolecules 27:6665–6670CrossRefGoogle Scholar
  22. 22.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) High refractive index polyimides derived from 2,7-Bis(4-aminophenylenesulfanyl)thianthrene and aromatic dianhydrides. Macromolecules 40:4614–4620CrossRefGoogle Scholar
  23. 23.
    Liu JG, Nakamura Y, Terraza CA, Suzuki Y, Shibasaki Y, Ando S, Ueda M (2008) Highly refractive polyimides derived from 2,8-Bis(p-aminophenylenesulfanyl)dibenzothiophene and aromatic dianhydrides. Macromol Chem Phys 209:195–203CrossRefGoogle Scholar
  24. 24.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Synthesis and characterization of highly refractive polyimides from 4,4′-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides. J Polym Sci, Part A: Polym Chem 45:5606–5617CrossRefGoogle Scholar
  25. 25.
    Suzuki Y, Liu J, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2008) Synthesis of highly refractive and transparent polyimides derived from 4,4′-[p-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic diamines. Polym J 40:414–420CrossRefGoogle Scholar
  26. 26.
    Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Synthesis and characterization of high refractive index polyimides derived from 4,4′-(p-Phenylenedisulfanyl)dianiline and various aromatic tetracarboxylic dianhydrides. Polym J 39:543–550CrossRefGoogle Scholar
  27. 27.
    Liu JG, Nakamura Y, Suzuki Y, Shibasaki Y, Ando S, Ueda M (2007) Highly refractive and transparent polyimides derived from 4,4‘-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic diamines. Macromolecules 40:7902–7909CrossRefGoogle Scholar
  28. 28.
    Edson JB, Knauss DM (2004) Thianthrene as an activating group for the synthesis of poly(aryl ether thianthrene)s by nucleophilic aromatic substitution. J Polym Sci, Part A: Polym Chem 42:6353–6363CrossRefGoogle Scholar
  29. 29.
    Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Optically transparent sulfur-containing Polyimide−TiO2Nanocomposite films with high refractive index and negative pattern formation from Poly(amic acid)−TiO2Nanocomposite film. Chem Mater 20:273–281CrossRefGoogle Scholar
  30. 30.
    Yang J, Fang J, Meichin N, Tanaka K, Okamoto K (2001) Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides. Polymer 42:2021–2029CrossRefGoogle Scholar
  31. 31.
    Friedrich R, Janietz S, Wedel A (1999) Synthesis and characterization of new thianthrene-containing polymers. Macromol Chem Phys 200:731–738CrossRefGoogle Scholar
  32. 32.
    Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104:81–88CrossRefGoogle Scholar
  33. 33.
    Raghu AV, Gadaginamath GS, Mathew N, Halligudi SB, Aminabhavi TM (2007). J Appl Polym Sci 106:299–308CrossRefGoogle Scholar
  34. 34.
    Suhas DP, Jeong HM, Aminabhavi TM, Raghu AV (2014). PolymEngSci 54:24–32Google Scholar
  35. 35.
    Ni HJ, Liu JG, Wang ZH, Yang SY (2015) A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J Ind Eng Chem 28:16–27CrossRefGoogle Scholar
  36. 36.
    Hasegawa M (2017) Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion. Polymers 9:520CrossRefGoogle Scholar
  37. 37.
    Watson KA, Palmieru FL, Connell JW (2002) Space environmentally stable polyimides and copolyimides derived from [2,4-Bis(3-aminophenoxy)phenyl]diphenylphosphine oxide. Macromolecules 35:4968–4974CrossRefGoogle Scholar
  38. 38.
    Russell TP, Gugger H, Swalen JD (1983) In-plane orientation of polyimide. J Polym Sci Polym Phys Ed 21:1745–1756CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingChina
  2. 2.School of Electrical EngineeringBeijing Jiaotong UniversityBeijingChina

Personalised recommendations