Advertisement

Ultralow-dielectric, nanoporous poly(methyl silsesquioxanes) films templated by a self-assembled block copolymer upon solvent annealing

  • C. Wang
  • T. M. Wang
  • Q. H. Wang
ORIGINAL PAPER
  • 12 Downloads

Abstract

A homogenous, nanoporous poly(methyl silsesquixoxane) (PMSSQ) with a uniform pore size distribution was prepared by templating with a poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) block copolymer. The self-assembly of the PS-b-P4VP and PMSSQ precursor (PMSSQ-P) blends thin films was achieved by solvent annealing firstly; then the self-assembled thin films were thermally cured to prepare nanoporous PMSSQ films after removal of the PS-b-P4VP porogen. The influence of annealing solvent and PS-b-P4VP loading on the self-assembly behavior of the PS-b-P4VP/PMSSQ-P blends films were studied. By exposing to CHCl3 vapor, fingerprint-type microphase-separated structures were achieved for the PS-b-P4VP/PMSSQ-P blends films with PS-b-P4VP loading ranging from 30% to 60%. The formation of the microphase-separated structures is attributed to the substantial mobility of the PS blocks and the P4VP/PMSSQ-P complexes, and segregated repulsion between them under the CHCl3 vapor. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) results demonstrated the prepared nanoporous PMSSQ films had a homogenous spherical pore morphology, with closed nanopores and a uniform size distribution over large areas. The porosity and dielectric properties of the homogenous, nanoporous PMSSQ could be adjusted by the content of PS-b-P4VP in the PS-b-P4VP/PMSSQ-P blends. As the PS-b-P4VP loading increased to 60 wt%, an ultralow dielectric constant of 1.41 was obtained, making the nanoporous PMSSQ films have potential applications in microelectronic devices.

Keywords

Block copolymers Dielectric constant Nanoporous Poly(methyl silsesquixoxane) Solvent annealing 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the Nature Science Foundation of China (NSFC) (Grant No. 51403219), National Natural Science Foundation of China-Aerospace Science and Technology Corporation of China Aerospace Advanced Manufacturing Technology Research Joint Fund (U1637205), and Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms (BZ0388201701).

References

  1. 1.
    Semiconductor Industry Association. International technology roadmap for semiconductors, 2011 edition. International SEMATECH, Austin TX, 2011Google Scholar
  2. 2.
    Volksen W, Miller RD, Dubois G (2010) Low dielectric constant materials. Chem Rev 110:56–110CrossRefPubMedGoogle Scholar
  3. 3.
    Treichel H (2001) Low dielectric constant materials. J Electron Mater 30:290–298CrossRefGoogle Scholar
  4. 4.
    Vedamurthy T, Murugesan M (2018) In-situ PMMA modified p-cresol resin-nylon 6 polymer blends and evaluation of their hydrophobic and dielectric properties. J Polym Res 25:209CrossRefGoogle Scholar
  5. 5.
    Homma T (1998) Low dielectric constant materials and methods for interlayer dielectric films in ultra large-scale integrated circuit multilevel interconnections. Mater Sci Eng R 23:243–285CrossRefGoogle Scholar
  6. 6.
    Wang C, Wang TM, Wang QH (2013) Low-dielectric, nanoporous polyimide thin films prepared from block copolymer templating. Express Polym Lett 7:667–672CrossRefGoogle Scholar
  7. 7.
    King SW, Jacob D, Vanleuven D, Colvin B, Kelly J, French M, Bielfeld J, Dutta D, Liu M, Gidley D (2012) Film property requirements for hermetic low-k a-SiOxCyNz:H dielectric barriers. ECS J Solid State Sci Technol 1:115–122CrossRefGoogle Scholar
  8. 8.
    Lee LH, Chen WC, Liu WC (2002) Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties. J. Polym. Sci. A Polym. Chem. 40:1560–1571CrossRefGoogle Scholar
  9. 9.
    Kim CS, Jeong HD (2008) What originates the dielectric permittivity of silicate-Silsesquioxane hybrid thin films? J Phys Chem B 112:16257–16260CrossRefPubMedGoogle Scholar
  10. 10.
    Jahromi S, Mostert B (2004) Templating nanoporosity in polyorganosilicates using reactive dendrimers. Macromolecules 37:2159–2162CrossRefGoogle Scholar
  11. 11.
    Lee B, Park YH, Hwang YT, Oh W, Yoon J, Ree AM (2005) Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres. Nat Mater 4:147–151CrossRefPubMedGoogle Scholar
  12. 12.
    Lee B, Oh W, Hwang Y, Park YH, Yoon J, Jin KS, Heo K, Kim J, Kim KW, Ree M (2005) Imprinting well-controlled nanopores in organosilicate dielectric films: triethoxysilyl-modified six-armed poly(ϵ-caprolactone) and its chemical hybridization with an organosilicate precursor. Adv Mater 17:696–701CrossRefGoogle Scholar
  13. 13.
    Magbitang T, Lee VY, Miller RD, Toney MF, Lin Z, Briber RM, Kim HC, Hedrick JL (2005) Templating organosilicate vitrification using unimolecular self-organizing polymers: evolution of morphology and nanoporosity development with network formation. Adv Mater 17:1031–1035CrossRefGoogle Scholar
  14. 14.
    Kim JS, Kim HC, Lee B, Ree M (2005) Imprinting of nanopores in organosilicate dielectric thin films with hyperbranched ketalized polyglycidol. Polymer 46:7394–7402CrossRefGoogle Scholar
  15. 15.
    Huang QR, Kim HC, Huang E, Mecerreyes D, Hedrick JL, Volksen W, Frank CW, Miller RD (2003) Miscibility in organic/inorganic hybrid nanocomposites suitable for microelectronic applications: comparison of modulated differential scanning calorimetry and fluorescence spectroscopy. Macromolecules 36:7661–7671CrossRefGoogle Scholar
  16. 16.
    Yang S, Mirau PA, Pai CS, Nalamasu O, Reichmanis E, Lin EK, Lee HJ, Gidley DW, Sun J (2001) Molecular templating of nanoporous ultralow dielectric constant (≈1.5) organosilicates by tailoring the microphase separation of triblock copolymers. Chem Mater 13:2762–2764CrossRefGoogle Scholar
  17. 17.
    Yang S, Mirau PA, Pai CS, Nalamasu O, Reichmanis E, Pai JC, Obeng YS, Seputro J, Lin EK, Lee HJ, Sun J, Gidley DW (2002) Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers. Chem Mater 14:369–374CrossRefGoogle Scholar
  18. 18.
    Chang Y, Chen CY, Chen WC (2004) Poly(methyl silsesquioxane) amphiphilic block copolymer hybrids and their porous derivatives: poly(styrene-block-acrylic acid) and poly(styrene-block-3 trimethoxysilylpropyl methacrylate). J Polym Sci B Polym Phys 42:4466–4477CrossRefGoogle Scholar
  19. 19.
    Yang CC, Wu PT, Chen WC, Chen HL (2004) Low dielectric constant nanoporous poly(methyl silsesquioxane) using poly (styrene-block-2-vinylpyridine) as a template. Polymer 45:5691–5702CrossRefGoogle Scholar
  20. 20.
    Lee CH, Chen WC, Hsu JY, Chen HL (2007) Effect of molecular architecture of copolymer template on the morphology of mesoporous methylsilsesquioxane. Polymer 48:3546–3554CrossRefGoogle Scholar
  21. 21.
    Yang YY, Yang CC (2008) Preparation of nanoporous poly(methyl silsesquioxanes) films using PS-b-P4VP as template. J Nanosci Nanotechnol 8:1537–1544CrossRefPubMedGoogle Scholar
  22. 22.
    Lee B, Yoon J, Oh W, Hwang Y, Heo K, Jin KS, Kim J, Kim KW, Ree M (2005) In-situ grazing incidence small-angle X-ray scattering studies on nanopore evolution in low-k organosilicate dielectric thin films. Macromolecules 38:3395–3405CrossRefGoogle Scholar
  23. 23.
    Lee LH, Chen WC, Liu WC (2002) Structural control of oligomeric methyl SilsesquioxanePrecursors and their thin-film properties. J Polym Sci A Polym Chem 40:1560–1571CrossRefGoogle Scholar
  24. 24.
    Oh W, Hwang YH, Park YH, Ree M, Chu SH, Char K, Lee JK, Kim SY (2003) Optical, dielectric and thermal properties of nanoscaled films of polyalkylsilsesquioxane composites with star-shaped poly(ε-caprolactone) and their derived nanoporous analogues. Polymer 44:2519–2527CrossRefGoogle Scholar
  25. 25.
    Matsumoto T (1999) Nonaromatic polyimides derived from cycloaliphatic monomers. Macromolecules 32:4933–4939CrossRefGoogle Scholar
  26. 26.
    Wang QH, Wang C, Wang TM (2012) Nanophase-separated structuresof hydrogen-bonded interpolymer complexes of AB block copolymer/Chomopolymer in thin film with variable blending composition upon solvent annealing. J Macromol Sci B 51:671–684CrossRefGoogle Scholar
  27. 27.
    Dobrosielska K, Wakao S, Takano A, Matsushita Y (2008) Nanophase-separated structures of AB block copolymer/C homopolymer blends with complementary hydrogen-bonding interactions. Macromolecules 41:7695–7698CrossRefGoogle Scholar
  28. 28.
    Dobrosielska K, Wakao S, Suzuki J, Noda K, Takano A, Matsushita Y (2009) Effect of Homopolymer molecular weight on nanophase-separated structures of AB block copolymer/C Homopolymer blends with hydrogen-bonding interactions. Macromolecules 42:7098–7102CrossRefGoogle Scholar
  29. 29.
    Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098CrossRefGoogle Scholar
  30. 30.
    Hou XD, Li QB, Cao A (2014) Solvent annealing-induced microphase-separation of polystyrene-b-polylactide block copolymer aimed at preparation of ordered nanoparticles/block copolymer hybrid thin film. J Polym Res 21:491CrossRefGoogle Scholar
  31. 31.
    Mao H, Li HF, Shang YR, Li JQ, Lu CH, An LJ, Jiang SC (2012) Solvent vapor induced structural evolution of micelle clusters and square slices that form in PS-b-PEO solutions. J Polym Res 19:11CrossRefGoogle Scholar
  32. 32.
    Guo R, Huang HY, Chen YZ, Gong YM, Du BY, He TB (2008) Effect of the nature of annealing solvent on the morphology of diblock copolymer blend thin films. Macromolecules 41:890–900CrossRefGoogle Scholar
  33. 33.
    Wang C, Wang TM, Wang QH (2010) Solvent annealing assisted self-assembly of hydrogen-bonded interpolymer complexes of AB block copolymer/C homopolymer in thin film. Polymer 51:4836–4842CrossRefGoogle Scholar
  34. 34.
    Park S, Wang JY, Kim B, Chen W, Russell TP (2007) Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films. Macromolecules 40:9059–9063CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang X, Sanchez IC, Johnston KP, Green PF (2007) Ordering in asymmetric block copolymer films by a compressive fluid. J Phys Chem B 111:16–25CrossRefPubMedGoogle Scholar
  36. 36.
    Zoelen WV, Asumaa T, Ruokolainen J, Ikkala O, Brinke GT (2008) Phase behavior of solvent vapor annealed thin films of PS-b-P4VP(PDP) supermolecules. Macromolecules 41:3199–3208CrossRefGoogle Scholar
  37. 37.
    Lee W, Zhang X, Briber RM (2010) A simple method for creating nanoporous block-copolymer thin films. Polymer 51:2376–2382CrossRefGoogle Scholar
  38. 38.
    Wang CY, Shen ZX, Zheng JZ (2001) High-temperature properties of a low dielectric constant organic spin-on glass for multilevel interconnects. Appl Spectrosc 55:1347–1351CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations