Advertisement

Journal of Polymer Research

, 25:232 | Cite as

Permeability control in polymeric systems: a review

  • K. Prasad
  • M. Nikzad
  • I. Sbarski
REVIEW PAPER
  • 48 Downloads

Abstract

Controlling the extent of permeant (gas/vapour/liquid) transport through a polymer is critical in packaging applications. This can be achieved by changing the chemical and physical nature of the polymer, blending the polymer with another, dispersing particulate, fibrillar or lamellar fillers, converting the microstructure of the polymer to a cellular one, or using an effective combination of all of these processes. This review critically analyses different methods of controlling polymer permeability reported in literature. It provides recommendations and fresh approaches for modification of polymer permeability when considering large scale manufacturing of packages with controlled permeability properties. In addition, the subsequent effects of these modification techniques on the mechanical properties of the polymeric system are considered.

Keywords

Permeability Polymer blends Polymer nanocomposites Polymer foams Storage units 

Notes

Acknowledgements

K.P. would like to acknowledge the financial support provided by the Swinburne University Postgraduate Research Award (SUPRA) instituted by the Swinburne University of Technology and to Peter Steer of Flexcube International Pty. Ltd.

References

  1. 1.
    George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26(6):985–1017.  https://doi.org/10.1016/S0079-6700(00)00036-8 CrossRefGoogle Scholar
  2. 2.
    Hiltner A, Liu RYF, Hu YS, Baer E (2005) Oxygen transport as a solid-state structure probe for polymeric materials: a review. J Polym Sci B Polym Phys 43(9):1047–1063.  https://doi.org/10.1002/polb.20349 CrossRefGoogle Scholar
  3. 3.
    Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984.  https://doi.org/10.1016/j.eurpolymj.2009.01.027 CrossRefGoogle Scholar
  4. 4.
    van Amerongen GJ (1947) The permeability fo different rubbers to gases and its relation to diffusivity and solubility. Rubber Chem Tech 20(2):494–514.  https://doi.org/10.5254/1.3543282 CrossRefGoogle Scholar
  5. 5.
    Alter H (1962) A critical investigation of polyethylene gas permeability. J Polym Sci 57(165):925–935.  https://doi.org/10.1002/pol.1962.1205716572 CrossRefGoogle Scholar
  6. 6.
    Meares P (1954) The diffusion of gases through polyvinyl Acetate1. J Am Chem Soc 76(13):3415–3422.  https://doi.org/10.1021/ja01642a015 CrossRefGoogle Scholar
  7. 7.
    Berens AR, Hopfenberg HB (1982) Diffusion of organic vapors at low concentrations in glassy PVC, polystyrene, and PMMA. J Membr Sci 10(2):283–303.  https://doi.org/10.1016/S0376-7388(00)81415-5 CrossRefGoogle Scholar
  8. 8.
    Buntinx M, Willems G, Knockaert G, Adons D, Yperman J, Carleer R, Peeters R (2014) Evaluation of the thickness and oxygen transmission rate before and after thermoforming mono- and multi-layer sheets into trays with variable depth. Polymers 6(12):3019–3043CrossRefGoogle Scholar
  9. 9.
    Urquijo J, Dagréou S, Guerrica-Echevarría G, Eguiazábal JI (2016) Structure and properties of poly(lactic acid)/poly(ε-caprolactone) nanocomposites with kinetically induced nanoclay location. J Appl Polym Sci 133(33).  https://doi.org/10.1002/app.43815
  10. 10.
    Fakirov S, Shields RJ, Fuchs C, Friedrich K, Bhattacharyya D (2008) Polyolefin/PET microplates–reinforced composites with improved barrier properties. Int J Polym Mater Polym Biomater 57(1):33–53.  https://doi.org/10.1080/00914030701328793 CrossRefGoogle Scholar
  11. 11.
    Su H, Xue J, Cai P, Li J, Guo S (2015) Structure and oxygen-barrier properties of (linear low-density polyethylene/ethylene–vinyl alcohol copolymer)/linear low-density polyethylene composite films prepared by microlayer coextrusion. J Appl Polym Sci 132(27).  https://doi.org/10.1002/app.42211 CrossRefGoogle Scholar
  12. 12.
    Yeh J-T, Chen H-Y (2007) Blending and oxygen permeation properties of the blown films of blends of modified polyamide and ethylene vinyl alcohol copolymer with varying vinyl alcohol contents. J Mater Sci 42(14):5742–5751.  https://doi.org/10.1007/s10853-006-0555-0 CrossRefGoogle Scholar
  13. 13.
    Utracki LA (2003) Introduction to polymer blends. In: Utracki LA (ed) Polymer blends handbook. Springer Netherlands, Dordrecht, pp 1-122.  https://doi.org/10.1007/0-306-48244-4_1 CrossRefGoogle Scholar
  14. 14.
    Zhong Y, Janes D, Zheng Y, Hetzer M, De Kee D (2007) Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite films. Polym Eng Sci 47(7):1101–1107.  https://doi.org/10.1002/pen.20792 CrossRefGoogle Scholar
  15. 15.
    Okada A, Fukushima Y, Kawasumi M, Inagaki S, Usuki A, Sugiyama S, Kurauch T, Kamigaito O (1988) Composite material and process for manufacturing same. US Patent 4739007A. https://patents.google.com/patent/US4739007A/en?oq=4739007. Accessed 23 Sept 2016
  16. 16.
    Garbassi F, Occhiello E (1999) Plasma deposition of silicon-containing layers on polymer substrates. Macromol Symp 139(1):107–114.  https://doi.org/10.1002/masy.19991390112 CrossRefGoogle Scholar
  17. 17.
    Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S (2015) Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloids Surf A Physicochem Eng Asp 468:201–210.  https://doi.org/10.1016/j.colsurfa.2014.12.037 CrossRefGoogle Scholar
  18. 18.
    Stein HL (1990) Composition and process for making porous articles from ultra high molecular weight polyethylene. US Patent 4925880A. https://patents.google.com/patent/US4925880A/en?oq=4925880. Accessed 4 Sept 2016
  19. 19.
    Pal AK, Katiyar V (2017) Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. J Polym Res 24(10):173.  https://doi.org/10.1007/s10965-017-1305-5 CrossRefGoogle Scholar
  20. 20.
    Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Membr Sci 514:595–612.  https://doi.org/10.1016/j.memsci.2016.05.026 CrossRefGoogle Scholar
  21. 21.
    Cui Y, Kumar S, Rao Kona B, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5(78):63669–63690.  https://doi.org/10.1039/C5RA10333A CrossRefGoogle Scholar
  22. 22.
    Robeson L (2014) Historical perspective of advances in the science and Technology of Polymer Blends. Polymers 6(5):1251–1265CrossRefGoogle Scholar
  23. 23.
    Johnson T, Thomas S (1999) Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends. Polymer 40(11):3223–3228.  https://doi.org/10.1016/S0032-3861(98)00528-X CrossRefGoogle Scholar
  24. 24.
    Geerts Y, Gillard S, Geuskens G (1996) Morphology and permeability of polymer blends—I. crosslinked EPDM-silicone blends. Eur Polym J 32(2):143–145.  https://doi.org/10.1016/0014-3057(95)00139-5 CrossRefGoogle Scholar
  25. 25.
    Marcandalli B, Testa G, Seves A, Martuscelli E (1991) Oxygen permeation through films of polypropylene/hydrogenated oligocyclopentadiene blends. Polymer 32(18):3376–3380.  https://doi.org/10.1016/0032-3861(91)90542-Q CrossRefGoogle Scholar
  26. 26.
    Roberto Passador F, Collà Ruvolo-Filho A, Pessan LA (2016) Structural, thermal, and gas transport properties of HDPE/LLDPE blend-based nanocomposites using a mixture of HDPE-g-MA and LLDPE-g-MA as compatibilizer. Polym Eng Sci 56(7):765–775.  https://doi.org/10.1002/pen.24305 CrossRefGoogle Scholar
  27. 27.
    Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16(4):149–158.  https://doi.org/10.1002/pts.621 CrossRefGoogle Scholar
  28. 28.
    John B, Thomas SP, Varughese KT, Oommen Z, Thomas S (2011) The effects of blend ratio, compatibilization and dynamic vulcanization on permeation of gases through HDPE/EVA blends. J Polym Res 18(5):1101–1109.  https://doi.org/10.1007/s10965-010-9512-3 CrossRefGoogle Scholar
  29. 29.
    Santamaría P, González I, Eguiazábal JI (2015) Mechanical and barrier properties of ternary nanocomposite films based on polycarbonate/amorphous polyamide blends modified with a nanoclay. Polym Adv Technol 26(6):665–673.  https://doi.org/10.1002/pat.3502 CrossRefGoogle Scholar
  30. 30.
    Mistretta MC, Fontana P, Ceraulo M, Morreale M, La Mantia FP (2015) Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polym Degrad Stab 112:192–197.  https://doi.org/10.1016/j.polymdegradstab.2015.01.002 CrossRefGoogle Scholar
  31. 31.
    Agwuncha SC, Owonubi SJ, Sadiku ER, Zwane RDS, Manjula B, Jayaramudu J, Ojijo VO, Aderibigbe BA, Raghavendra GM (2016) Chapter 11 - immiscible polymer blends stabilized with nanophase. In: Thomas S, Shanks R, Chandrasekharakurup S (eds) Design and applications of nanostructured polymer blends and nanocomposite systems. William Andrew Publishing, Boston, pp 215–237.  https://doi.org/10.1016/B978-0-323-39408-6.00010-8 CrossRefGoogle Scholar
  32. 32.
    Hong I-K, Lee S (2013) Properties of ultrasound-assisted blends of poly(ethylene terephthalate) with polycarbonate. J Ind Eng Chem 19(1):87–93.  https://doi.org/10.1016/j.jiec.2012.07.006 CrossRefGoogle Scholar
  33. 33.
    Krasnou I, Gårdebjer S, Tarasova E, Larsson A, Westman G, Krumme A (2016) Permeability of water and oleic acid in composite films of phase separated polypropylene and cellulose stearate blends. Carbohydr Polym 152:450–458.  https://doi.org/10.1016/j.carbpol.2016.07.016 CrossRefPubMedGoogle Scholar
  34. 34.
    Lin R, Bhattacharyya D, Fakirov S (2007) Morphology of rotationally Moulded microfibril reinforced composites and its effect on product performance. Key Eng Mater 334-335:349–352.  https://doi.org/10.4028/www.scientific.net/KEM.334-335.349 CrossRefGoogle Scholar
  35. 35.
    Shields RJ, Bhattacharyya D, Fakirov S (2008) Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends. Compos A: Appl Sci Manuf 39(6):940–949.  https://doi.org/10.1016/j.compositesa.2008.03.008 CrossRefGoogle Scholar
  36. 36.
    Tan SNS, Somashekar AA, Bhattacharyya D (2015) Development and analysis of gas barrier properties of microfibrillar polymer–polymer composites. J Mater Sci 50(22):7384–7397.  https://doi.org/10.1007/s10853-015-9296-2 CrossRefGoogle Scholar
  37. 37.
    Frisk P, Laurent J (1999) Nanocomposite polymer container. US Patent 5876812A. https://patents.google.com/patent/US5876812A/en?oq=5876812. Accessed 9 Sept 2016
  38. 38.
    Gough TC, Jeffels PM, Harrison AG (1997) Composite sheet having improved adhesive properties and methods of making same. US Patent 5667886A. https://patents.google.com/patent/US5667886A/en?oq=5667886. Accessed 23 Sept 2016
  39. 39.
    Mohamadi M, Garmabi H, Keshavarzi F (2016) An investigation of the effects of organomodified-fluoromica on mechanical and barrier properties of compatibilized high density polyethylene nanocomposite films. J Plast Film Sheeting 32(1):10–33.  https://doi.org/10.1177/8756087915569097 CrossRefGoogle Scholar
  40. 40.
    Tayebi M, Ramazani SAA, Hamed Mosavian MT, Tayyebi A (2015) LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym Adv Technol 26(9):1083–1090.  https://doi.org/10.1002/pat.3537 CrossRefGoogle Scholar
  41. 41.
    Atayev P, Bekat T, Öner M (2015) The effects of zinc oxide and clay nanoparticles on thermal, barrier, and mechanical properties of polypropylene and high density polyethylene. Sigma J Eng Nat Sci 33(1):16–21Google Scholar
  42. 42.
    Al-Jabareen A, Al-Bustami H, Harel H, Marom G (2013) Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. J Appl Polym Sci 128(3):1534–1539.  https://doi.org/10.1002/app.38302 CrossRefGoogle Scholar
  43. 43.
    Li G-F, Luo W-H, Xiao M, Wang S-J, Meng Y-Z (2016) Biodegradable poly(propylene carbonate)/layered double hydroxide composite films with enhanced gas barrier and mechanical properties. Chin J Polym Sci 34(1):13–22.  https://doi.org/10.1007/s10118-016-1720-9 CrossRefGoogle Scholar
  44. 44.
    Demirkaya ZD, Sengul B, Eroglu MS, Dilsiz N (2015) Comprehensive characterization of polylactide-layered double hydroxides nanocomposites as packaging materials. J Polym Res 22(7):124.  https://doi.org/10.1007/s10965-015-0759-6 CrossRefGoogle Scholar
  45. 45.
    Pavani GJ, Pavani S, Adalberto S, Ferreira CA (2015) Application of polymeric nanocomposites and carbon Fiber composites in the production of natural gas reservoirs. J Nanomater 2015:7.  https://doi.org/10.1155/2015/658727 CrossRefGoogle Scholar
  46. 46.
    Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86.  https://doi.org/10.1007/s11837-006-0234-2 CrossRefGoogle Scholar
  47. 47.
    Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289.  https://doi.org/10.1016/j.indcrop.2016.01.045 CrossRefGoogle Scholar
  48. 48.
    Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural Fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:15.  https://doi.org/10.1155/2015/243947 CrossRefGoogle Scholar
  49. 49.
    Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crop Prod 33(1):7–22.  https://doi.org/10.1016/j.indcrop.2010.09.009 CrossRefGoogle Scholar
  50. 50.
    Cisneros-López EO, Pérez-Fonseca AA, Fuentes-Talavera FJ, Anzaldo J, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2016) Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym Eng Sci 56(8):856–865.  https://doi.org/10.1002/pen.24314 CrossRefGoogle Scholar
  51. 51.
    Siaotong BAC, Tabil LG, Panigrahi SA, Crerar WJ (2010) Extrusion compounding of flax-Fiber-reinforced polyethylene composites: effects of Fiber content and extrusion parameters. J Nat Fibers 7(4):289–306.  https://doi.org/10.1080/15440478.2010.527680 CrossRefGoogle Scholar
  52. 52.
    Krishnan K A, Jose C, K. R R, George KE (2015) Sisal nanofibril reinforced polypropylene/polystyrene blends: morphology, mechanical, dynamic mechanical and water transmission studies. Ind Crop Prod 71:173–184.  https://doi.org/10.1016/j.indcrop.2015.03.076 CrossRefGoogle Scholar
  53. 53.
    George J, Bhagawan SS, Thomas S (1998) Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Compos Sci Technol 58(9):1471–1485.  https://doi.org/10.1016/S0266-3538(97)00161-9 CrossRefGoogle Scholar
  54. 54.
    Tserki V, Matzinos P, Panayiotou C (2006) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos A: Appl Sci Manuf 37(9):1231–1238.  https://doi.org/10.1016/j.compositesa.2005.09.004 CrossRefGoogle Scholar
  55. 55.
    Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67(3):453–461.  https://doi.org/10.1016/j.compscitech.2006.08.025 CrossRefGoogle Scholar
  56. 56.
    Fendler A, Villanueva MP, Gimenez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14(5):427–438.  https://doi.org/10.1007/s10570-007-9136-x CrossRefGoogle Scholar
  57. 57.
    Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858.  https://doi.org/10.1021/ma000565f CrossRefGoogle Scholar
  58. 58.
    Lee HM, Park BJ, Choi HJ, Gupta RK, Bhattachary SN (2007) Preparation and rheological characteristics of ethylene-vinyl acetate copolymer/Organoclay nanocomposites. J Macromol Sci Part B: Phys 46(2):261–273.  https://doi.org/10.1080/00222340601066956 CrossRefGoogle Scholar
  59. 59.
    Ibeh CC, Bubacz M (2008) Current trends in nanocomposite foams. J Cell Plast 44(6):493–515.  https://doi.org/10.1177/0021955x08097707 CrossRefGoogle Scholar
  60. 60.
    Pinto J, Dumon M, Rodriguez-Perez MA (2017) 9 - Nanoporous polymer foams from nanostructured polymer blends: Preparation, characterization, and properties. In: Visakh PM, Markovic G, Pasquini D (eds) Recent Developments in Polymer Macro, Micro and Nano Blends. Woodhead Publishing, pp 237–288.  https://doi.org/10.1016/B978-0-08-100408-1.00009-1 CrossRefGoogle Scholar
  61. 61.
    Lee ST (2009) History and trends of polymeric foams: from process/product to performance/regulation. In: Lee ST, Klaus Scholz D (eds) Polymeric foams technology and developments in regulation, process, and products. CRC Press, Boca RatonGoogle Scholar
  62. 62.
    Babaei I, Madanipour M, Farsi M, Farajpoor A (2014) Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos Part B 56:163–170.  https://doi.org/10.1016/j.compositesb.2013.08.039 CrossRefGoogle Scholar
  63. 63.
    Wan F, Tran MP, Leblanc C, Béchet E, Plougonven E, Léonard A, Detrembleur C, Noels L, Thomassin JM, Nguyen VD (2015) Experimental and computational micro-mechanical investigations of compressive properties of polypropylene/multi-walled carbon nanotubes nanocomposite foams. Mech Mater 91:95–118.  https://doi.org/10.1016/j.mechmat.2015.07.004 CrossRefGoogle Scholar
  64. 64.
    Park I, Peng H-G, Gidley DW, Xue S, Pinnavaia TJ (2006) Epoxy−silica mesocomposites with enhanced tensile properties and oxygen permeability. Chem Mater 18(3):650–656.  https://doi.org/10.1021/cm051768r CrossRefGoogle Scholar
  65. 65.
    Mrlík M, Al Maadeed MAA (2016) Tailoring of the thermal, mechanical and dielectric properties of the polypropylene foams using gamma-irradiation. Polym Degrad Stab 133:234–242.  https://doi.org/10.1016/j.polymdegradstab.2016.08.017 CrossRefGoogle Scholar
  66. 66.
    Dai J, Liu C-M, Yang J-H, Wang Y, Zhang C-L, Z-Ww Z (2016) Largely enhanced effective porosity of uniaxial stretched polypropylene membrane achieved by pore-forming agent. J Polym Res 23(2):17.  https://doi.org/10.1007/s10965-015-0909-x CrossRefGoogle Scholar
  67. 67.
    Willett JL, Shogren RL (2002) Processing and properties of extruded starch/polymer foams. Polymer 43(22):5935–5947.  https://doi.org/10.1016/S0032-3861(02)00497-4 CrossRefGoogle Scholar
  68. 68.
    Guo G, Ma Q, Zhao B, Zhang D (2013) Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams. Ultrason Sonochem 20(1):137–143.  https://doi.org/10.1016/j.ultsonch.2012.06.001 CrossRefPubMedGoogle Scholar
  69. 69.
    Bledzki AK, Faruk O (2006) Injection moulded microcellular wood fibre–polypropylene composites. Compos A: Appl Sci Manuf 37(9):1358–1367.  https://doi.org/10.1016/j.compositesa.2005.08.010 CrossRefGoogle Scholar
  70. 70.
    Ramkumar PL, Kulkarni DM, Abhijit VVR, Cherukumudi A (2014) Investigation of melt flow index and impact strength of foamed LLDPE for rotational Moulding process. Proc Mater Sci 6:361–367.  https://doi.org/10.1016/j.mspro.2014.07.046 CrossRefGoogle Scholar
  71. 71.
    Bush SF, Ademosu OK (2005) Low-density rotomoulded polymer foams. Colloids Surf A Physicochem Eng Asp 263(1):370–378.  https://doi.org/10.1016/j.colsurfa.2005.01.029 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations