Journal of Polymer Research

, 25:230 | Cite as

Unique behavior of in-situ generated nanosilica particles on physico-mechanical properties of fluoroelastomer

  • M. S. Satyanarayana
  • P. R. Sreenath
  • S. Basavaraja
  • K. Dinesh KumarEmail author


Fluoroelastomer (FKM) rubber containing different weight percentage of in-situ generated nanosilica particles have been prepared by sol-gel method using tetraethoxysilane (TEOS) as precursor and n-butyl amine as catalyst. FKM rubber with precipitated silica particles have also been prepared to compare the effect of in-situ generated nanosilica particles and precipitated silica particles on the physico-mechanical properties of FKM rubber. It is interesting to note that the FKM rubber containing in-situ generated nanosilica particles display excellent tensile stress-strain properties, rheological properties and thermal properties in comparison to the FKM rubber containing precipitated silica particles. The better performance of the in-situ generated nanosilica particles has been attributed to the good dispersion of in-situ generated nanosilica particles in FKM rubber matrix when compared to the precipitated silica particles. The fourier transform infrared (FTIR) spectroscopy clearly confirms the existence of chemical interaction between the FKM rubber chains and the in-situ generated nanosilica particles which leads to the good dispersion of the nanosilica particles in the rubber matrix. Strain sweep studies confirm the presence of more rubber-filler interaction in FKM rubber filled with in-situ generated nanosilica particles. On the other hand, strain sweep studies confirm the presence of more filler-filler aggregation in FKM rubber filled with precipitated silica particles. The dispersion of the in-situ generated nanosilica particles and precipitated silica particles in the surface and bulk of FKM rubber has been studied by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Selected samples have been cured to understand the effect of curing on the efficiency of in-situ generated nanosilica particles and precipitated silica particles on the physico-mechanical properties of FKM rubber.


Fluoroelastomer Nanosilica Thermal stability Sol-gel Morphology Precipitated silica 



M.S.S., P.R.S. and K.D.K. are indebted to Indian Institute of Technology Patna for providing necessary facilities to carry out this work.


  1. 1.
    Cheremisinoff NP (1989) Handbook of polymer science and technology. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Sonbati AZE (2012) Thermoplastic elastomers. InTech Chapters, RijekaCrossRefGoogle Scholar
  3. 3.
    Messori M (2011) In situ synthesis of rubber nanocomposites: recent advance in elastomeric nanocomposites. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Treloar LRG (1975) The physics of rubber elasticity. Clarendon press. Oxford, LondonGoogle Scholar
  5. 5.
    Choi SS (2001) Improvement of properties of silica-filled styrene–butadiene rubber compounds using acrylonitrile–butadiene rubber. J Appl Polym Sci 79:1127–1133CrossRefGoogle Scholar
  6. 6.
    Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115CrossRefGoogle Scholar
  7. 7.
    Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279:1–9CrossRefGoogle Scholar
  8. 8.
    Godovoski DY (1995) Electron behavior and magnetic properties of polymer nanocomposites: advances in polymer science. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  9. 9.
    Lim MH, Blanford CF, Stein A (1998) Synthesis of ordered microporous silicates with organo-sulfur surface groups and their applications as solid acid catalysts. Chem Mater 10:467–470CrossRefGoogle Scholar
  10. 10.
    Melero JA, Stucky GD, Grieken RV, Morales G (2002) Direct syntheses of ordered SBA-15 mesoporous materials containing arene sulfonic acid groups. J Mater Chem 12:1664–1670CrossRefGoogle Scholar
  11. 11.
    Chung KH (2008) Effect of silica reinforcement on natural rubber and butadiene rubber vulcanizates by a sol–gel reaction with tetraethoxysilane. J Appl Polym Sci 108:3952–3959CrossRefGoogle Scholar
  12. 12.
    Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66:2935–2944CrossRefGoogle Scholar
  13. 13.
    Murakami K, Iio S, Ikeda Y, Ito H, Tosaka M, Kohjiya S (2003) Effect of silane-coupling agent on natural rubber filled with silica generated in situ. J Mater Sci 38:1447–1455CrossRefGoogle Scholar
  14. 14.
    Arrighi V, McEwen IJ, Qian H, Prieto MBS (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofillers. Polymer 44:6259–6266CrossRefGoogle Scholar
  15. 15.
    Kohjiya S, Ikeda Y (2003) In situ formation of particulate silica in natural rubber matrix by the sol-gel reaction. J Sol-Gel Sci Technol 26:495–498CrossRefGoogle Scholar
  16. 16.
    Yoshikai K, Ohsaki T, Furukawa M (2002) Silica reinforcement of synthetic diene rubbers by sol–gel process in the latex. J Appl Polym Sci 85:2053–2063CrossRefGoogle Scholar
  17. 17.
    Wei Y, Yang DC, Bakthavatchalam R (1992) Thermal stability and hardness of new polyacrylate-SiO2 hybrid sol-gel materials. Mater Lett 13:261–266CrossRefGoogle Scholar
  18. 18.
    Kohjiya S, Ikeda Y (2000) Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem Technol 73:534–550CrossRefGoogle Scholar
  19. 19.
    Kohjiya S, Murakami K, Iio S, Tanahashi T, Ikeda Y (2001) In situ filling of silica onto “green” natural rubber by the sol-gel process. Rubber Chem Technol 74:16–27CrossRefGoogle Scholar
  20. 20.
    Ikeda Y, Kameda Y (2004) Preparation of “green” composites by the sol-gel process: in situ silica filled natural rubber. J Sol-Gel Sci Technol 31:137–142CrossRefGoogle Scholar
  21. 21.
    Das A, Jurk R, Stockelhuber KW, Heinrich G (2008) Silica-ethylene propylene diene monomer rubber networking by in situ sol-gel method. J Macromol Sci Part A-Pure Appl Chem 45:101–106CrossRefGoogle Scholar
  22. 22.
    Breiner JM, Mark JE, Beaucage G (1999) Dependence of silica particle sizes on network chain lengths, silica contents, and catalyst concentrations in in situ-reinforced polysiloxane elastomers. J Polym Sci B Polym Phys 37:1421–1427CrossRefGoogle Scholar
  23. 23.
    Gvishi R (2009) Fast sol–gel technology: from fabrication to applications. J Sol-Gel Sci Technol 50:241–253CrossRefGoogle Scholar
  24. 24.
    Dong-na Z, Kai-chang K, Pan G, Mei H, Min C (2012) Preparation and characterization of PTFE-g-GMA modified PTFE/SiO2 organic–inorganic hybrids. J Polym Res 19:9873–9883CrossRefGoogle Scholar
  25. 25.
    Jiao J, Liu P, Wang L, Cai Y (2013) One-step synthesis of improved silica/epoxy nanocomposites with inorganic-organic hybrid network. J Polym Res 20:202–210CrossRefGoogle Scholar
  26. 26.
    Yang L, Xu Y, Qiu S, Zhang Y (2012) Polyacrylate/SiO2 nanocomposites prepared by combining non-aqueous sol–gel process and miniemulsion polymerization. J Polym Res 19:30–36CrossRefGoogle Scholar
  27. 27.
    Otitoju TA, Ahmad AL, Ooi BS (2017) Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance. J Polym Res 24:123–132CrossRefGoogle Scholar
  28. 28.
    Lin J, Liu Y, Yang W, Xie Z, Zhang P, Li X, Lin H, Chen G, Lei Q (2012) Structure and mechanical properties of the hybrid films of well dispersed SiO2 nanoparticle in polyimide (PI/SiO2) prepared by sol–gel process. J Polym Res 19:30–36CrossRefGoogle Scholar
  29. 29.
    Ikeda Y, Tanaka A, Kohjiya S (1997) Reinforcement of styrene–butadiene rubber vulcanizate by in-situ silica prepared by the sol–gel reaction of tetraethoxysilane. J Mater Chem 7:1497–1503CrossRefGoogle Scholar
  30. 30.
    Bokobza L, Chauvin JP (2005) Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer 46:4144–4151CrossRefGoogle Scholar
  31. 31.
    Zhou D, Subramaniam S, Mark JE (2005) In-situ synthesis of polyaniline in poly(dimethylsiloxane) networks using an inverse emulsion route. J Macromol Sci Part A-Pure Appl Chem 42:113–126CrossRefGoogle Scholar
  32. 32.
    Bandyopadhyay A, Bhowmick AK, De Sarkar M (2004) Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol-gel technique. J Appl Polym Sci 93:2579–2589CrossRefGoogle Scholar
  33. 33.
    Yan H, Sun K, Zhang Y, Zhang Y (2005) Effect of nitrile rubber on properties of silica-filled natural rubber compounds. Polym Test 24:32–38CrossRefGoogle Scholar
  34. 34.
    Kohjiya S, Kato A, Ikeda Y (2008) Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog Polym Sci 33:979–997CrossRefGoogle Scholar
  35. 35.
    Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol 45:299–306CrossRefGoogle Scholar
  36. 36.
    Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J Sol-Gel Sci Technol 52:219–227CrossRefGoogle Scholar
  37. 37.
    Bandyopadhyay A, De Sarkar M, Bhowmick AK (2005) Epoxidised natural rubber/silica hybrid nanocomposites by sol-gel technique: effect of reactants on the structure and the properties. J. Mater Sci 40:53–62CrossRefGoogle Scholar
  38. 38.
    Kapgate BP, Das C, Basu D, Das A, Heinrich G, Reuter U (2014) Effect of silane integrated sol–gel derived in situ silica on the properties of nitrile rubber. J Appl Polym Sci 131:1–9CrossRefGoogle Scholar
  39. 39.
    Sengupta R, Bandyopadhyay A, Sabharwal S, Chaki TK, Bhowmick AK (2005) Polyamide-6, 6/in situ silica hybrid nanocomposites by sol–gel technique: synthesis, characterization and properties. Polymer 46:3343–3354CrossRefGoogle Scholar
  40. 40.
    Kapgate BP, Das C (2014) Reinforcing efficiency and compatibilizing effect of sol–gel derived in situ silica for natural rubber/chloroprene rubber blends. RSC Adv 4:58816–58825CrossRefGoogle Scholar
  41. 41.
    Bansod ND, Kapgate BP, Das C, Basu D, Debnath SC, Roy K, Weissner S (2015) Controlled growth of in situ silica in a NR/CR blend by a solution sol–gel method and the studies of its composite properties. RSC Adv 5:53559–53568CrossRefGoogle Scholar
  42. 42.
    Maiti M, Bhowmick AK (2006) Structure and properties of some novel fluoroelastomer/clay nanocomposites with special reference to their interaction. J Polym Sci B Polym Phys 44:162–176CrossRefGoogle Scholar
  43. 43.
    Lakshminarayanan S, Gelves GA, Sundararaj U (2012) Vulcanization behavior and mechanical properties of organoclay fluoroelastomer nanocomposites. J Appl Polym Sci 124:5056–5063Google Scholar
  44. 44.
    Sunada K, Takenaka K, Shiomi T (2005) Synthesis of polychloroprene–silica composites by sol-gel method in the presence of modified polychloroprene containing triethoxysilyl group. J Appl Polym Sci 97:1545–1552CrossRefGoogle Scholar
  45. 45.
    Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Mater Chem Phys 144:122–131CrossRefGoogle Scholar
  46. 46.
    Ongwongsakul K, Rempel GL, Poompradub S, Hinchiranan N (2017) Comparative behavior of in situ silica generation in saturated rubbers: EPDM and hydrogenated natural rubber. J Appl Polym Sci 134:44748–44761CrossRefGoogle Scholar
  47. 47.
    Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615CrossRefGoogle Scholar
  48. 48.
    Wolthers W, Ende D, Breedveld V, Duits MHG, Potanin A, Wientjes RHW, Mellema J (1997) Linear viscoelastic behavior of aggregated colloidal dispersions. Phys Rev E 56:5726–5733CrossRefGoogle Scholar
  49. 49.
    Donato RK, Donato KZ, Schrekker HS, Matejka L (2012) Tunable reinforcement of epoxy-silica nanocomposites with ionic liquids. J Mater Chem 22:9939–9948CrossRefGoogle Scholar
  50. 50.
    Roy N, Bhowmick AK (2010) Novel in situ polydimethyl siloxane-sepiolite nanocomposites: structure-property relationship. Polymer 51:5172–5185CrossRefGoogle Scholar
  51. 51.
    Kalfoglou NK (1986) Effect of fillers on the compatibility of polymer blends. J Appl Polym Sci 32:5247–5259CrossRefGoogle Scholar
  52. 52.
    Medalia AI (1978) Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523CrossRefGoogle Scholar
  53. 53.
    Boluk MY, Schereiber HP (1986) Interfacial interactions and the properties of filled polymers: I. dynamic-mechanical responses. Polym Compos 7:295–301CrossRefGoogle Scholar
  54. 54.
    Ashida M, Noguchi T, Mashimo S (1985) Effect of matrix's type on the dynamic properties for short fiber-elastomer composite. J Appl Polym Sci 30:1011–1021CrossRefGoogle Scholar
  55. 55.
    Kumar KD, Tsou AH, Bhowmick AK (2010) Unique tackification behavior of needle-like sepiolite nanoclay in brominated isobutylene-co-p-methylstyrene (BIMS) rubber. Macromolecules 43:4184–4193CrossRefGoogle Scholar
  56. 56.
    Kumar KD, Bhowmick AK, Tsou AH (2008) Influence of aging on autohesive tack of brominated isobutylene-co-p-methylstyrene (BIMS) rubber in the presence of phenolic resin tackifier. J Adhes 84:764–787CrossRefGoogle Scholar
  57. 57.
    Kumar KD, Gupta S, Sharma BB, Tsou AH, Bhowmick AK (2008) Probing the viscoelastic properties of brominated isobutylene-co-p-methylstyrene rubber/tackifier blends using a rubber process analyzer. Polym Eng Sci 48:2400–2409CrossRefGoogle Scholar
  58. 58.
    Luginsland H, Frohlich J, Wehmeier A (2002) Influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber Chem Technol 75:563–579CrossRefGoogle Scholar
  59. 59.
    Palza H, Vergara R, Zapata P (2010) Improving the thermal behavior of poly (propylene) by addition of spherical silica nanoparticles. Macromol Mater Eng 295:899–905CrossRefGoogle Scholar
  60. 60.
    Sittiphan T, Prasassarakich P, Poompradub S (2014) Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique. Mater Sci Eng B 181:39–45CrossRefGoogle Scholar
  61. 61.
    Maiti M, Mitra S, Bhowmick AK (2008) Effect of nanoclays on high and low temperature degradation of fluoroelastomers. Polym Degrad Stab 93:188–200CrossRefGoogle Scholar
  62. 62.
    Messori M, Bignotti F, De Santis R, Taurino R (2009) Modification of isoprene rubber by in situ silica generation. Polym Int 58:880–887CrossRefGoogle Scholar
  63. 63.
    Morselli D, Bondioli F, Luyt AS, Mokhothu TH, Messori M (2013) Preparation and characterization of EPDM rubber modified with in situ generated silica. J Appl Polym Sci 128:2525–2532CrossRefGoogle Scholar
  64. 64.
    Kapgate BP, Das C, Das A, Basu D, Reuter U, Heinrich G (2012) Effect of sol–gel derived in situ silica on the morphology and mechanical behavior of natural rubber and acrylonitrile butadiene rubber blends. J Sol-Gel Sci Techol 63:501–509CrossRefGoogle Scholar
  65. 65.
    Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219CrossRefGoogle Scholar
  66. 66.
    Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A (2004) FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mat Sci (Medžiagotyra) 10:287–290Google Scholar
  67. 67.
    Mitra S, Ghanbari-Siahkali A, Kingshott P, Almdal K, Rehmeier HK, Christensen AG (2004) Chemical degradation of fluoroelastomer in an alkaline environment. Polym Degrad Stab 83:195–206CrossRefGoogle Scholar
  68. 68.
    Scotti R, Wahba L, Crippa M, D’Arienzo M, Donetti R, Santo N, Morazzoni F (2012) Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8:2131–2143CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. S. Satyanarayana
    • 1
  • P. R. Sreenath
    • 1
  • S. Basavaraja
    • 2
  • K. Dinesh Kumar
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology PatnaPatnaIndia
  2. 2.Icon Analytical Equipment Pvt. Ltd.BengaluruIndia

Personalised recommendations